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Abstract: In this research paper selecting the value of the series compensation capacitance 

Cse, of an Self Excited Induction Generator, one should consider the voltage drop across Cse 

as well as the amount of compensating reactive power obtainable. A large value of Cse 

results in a smaller voltage drop, but the reactive power IL²Xse is also small. On the other 

hand, a small value of Cse results in a larger voltage drop but provides more reactive power 

for voltage compensation. At least one of the terminal impedances Z1 , Z2, Z3 and must 

contain a capacitive element in order to furnish the reactive power necessary for initiating 

self-excitation. Since the SEIG supplies isolated loads, the frequency of the output voltage is 

variable even when the rotor speed is maintained constant. The detailed mathematical 

model applying the  Steinmetz connection has been presented in this research paper. 

 

Index Terms—Induction generators, pattern search method, self-excitation, series  

                         compensation,   Steinmetz connection. 

 

 

I. INTRODUCTION 

 

           Exploitation of renewable energy resources and the development of autonomous 

power systems has led to popular use of self-excited induction generators (SEIGs) [16, 9 

and 6]. Since many autonomous power systems supply single-phase loads, single-phase 

induction generators need to be used [15]. Single-phase induction motors can be operated 

as SEIGs [17, 13 and 21], but in general they are limited to relatively small power 
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outputs. SEIG ratings by more than 7.5 HP, 3-phase induction machines are cheaper and 

easily available in the market. Al-Bahrani and Malik [1] analyzed the single-phasing 

mode of operation of a three-phase induction generator in which the excitation 

capacitance and the load were connected in parallel. Since only two phases of a star-

connected generator were involved in the energy conversion process, the winding 

utilization was poor and the machine phases were severely unbalanced. More recently, 

Fukami et al developed a self-excited single-phase asynchronous generator using a 3-

phase machine [18]. By including series compensation capacitances, the voltage 

regulation was improved. However, the generator winding configuration was also one 

that gave the single-phasing mode of operation. Phase unbalance was again a problem 

and only an output power of 1 kW was obtained from a machine rated at 2.2 kW.    

    

             Better utilization of renewable energy may be achieved by developing small-

scale, autonomous power systems in favorable geographic locations. The system cost can 

be minimized by the use of cage-type, self-excited induction generators (SEIGs). Over 

the past two decades, there has been rigorous research on SEIGs, encompassing such 

aspects as steady-state and transient analysis [16], capacitance requirement [20], voltage 

compensation [7], frequency control [8], and parallel operation [5]. Most of the published 

work focused on three-phase SEIGs with balanced excitation capacitances and loads. 

When the power ratings of the generator and loads become smaller, however, it becomes 

increasingly difficult to ensure an even distribution of the loads among the phases, which 

means that in general the SEIG has to operate with a certain degree of phase imbalance.  

 

             Autonomous power systems often employ single-phase distribution schemes for 

reasons of low cost, ease of maintenance and simplicity in protection [15]. The inherent 

phase imbalance in the machine will result in poor generator performance such as over-

current and over-voltage, poor efficiency, excessive temperature rise and machine 

vibration. These undesirable effects can be alleviated to a large extent by the use of the 

Steinmetz connection [19] in which the excitation capacitance and load are connected 

across different phases. For isolated operation, however, perfect phase balance cannot be 

achieved for a pure resistive load [22] or a series R–L load [2]. The objectives of the 

paper are to develop a general method for analyzing the performance of a 3-phase SEIG 

under unbalanced operating conditions and to investigate a novel phase-balancing scheme 

for the SEIG when supplying single-phase loads.  
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                                    Fig. 1. Circuit connection of 1-phase SRSEIG . 

 

                             
                 Fig. 2. Asymmetrically connected terminal impedances 3-phase SEIG. 

 

 

II.        CIRCUIT   CONNECTION   OF   SRSEIG 

 

            Figure 1 shows the circuit connection of the single-phase SRSEIG based on the 

Steinmetz connection. The single-phase load connected across the phase A as the 

reference phase, while the excitation capacitance Csh is connected across phase B (the 

lagging phase). Besides providing the reactive power for initiating and sustaining self-

excitation, Csh also acts as a phase balancer. The compensation capacitance Cse is in 

series with the load and provides additional reactive power when the load current 

increases. To facilitate analysis, all the voltages and the equivalent circuit parameters 

have been referred to 

the base (rated) frequency fbaseby introducing the following parameters: 

 

1) Per-unit frequency  a, defined by: 

   a = (Actual frequency)/(Base frequency) 

2) Per-unit speed , defined by: 

   b = Ratio of the Actual rotor speed to the Synchronous speed corresponding to the base 

frequency. 
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III. STEADY-STATE   ANALYSIS 

 

              Referring to Fig. 1 and adopting the motor convention for the direction of 

currents, the following “inspection” equations can be written [10]: 

 

            V = Va                                                                                                        (1) 

 Va + Vb + Vc = 0                                                                                          (2) 

 I1 = Vb Yab = 1c - 1b                                                                                     (3) 

 I = 1a - 1c                                                                                                    (4) 

  

In (3), Yshis the complex admittance of the excitation capacitance given by: 

 

           Ysh = 1 / Zsh = j2π fbase Csh a2                                                                                  (5) 

Solving the above equations using symmetrical components analysis, the positive- and 

negative-sequence voltages are determined  as follows: 

 

Vp = √3 V [Yn + Ysh (e jπ / 6  /√3) ] / [Ysh + Yp + Yn ]                                                       (6) 

 

Vn = √3 V [Yp + Ysh (e -jπ / 6  /√3) ] / [Ysh + Yp + Yn ]                                                      (7) 

 

The input impedance of the induction generator across terminals 3 and 4 can be expressed 

as: 

 

Zin =(Zp Zn + Zp Zsh + Zn Zsh) / (3 Zsh + Zp + Zn)                                                       (8) 

 

Details of the +ve sequence impedance Zp and the –ve sequence impedance Zp are given 

in Appendix I. For successful voltage build-up, the sum of impedances in loop 1243 must 

be equal to zero, i.e     

 

Zin + ZL + Zsc = 0                                                                                                    (9) 

Where ZL = RL / a + j XL                                                                                       (10) 

and, Zse = 1 / (j2π fbase .Csc a2 )                                                                           (11) 

 

By Newton - Raphson method we can find out  ‘a’ and Xm can be established. 

 

For a given operating condition, (9) may be solved to give the per-unit frequency and the 

magnetizing reactance . The generator performance can then be calculated using (1) – (7), 

the symmetrical components equations, and the magnetization curve of the induction 

machine. 
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IV. SOLUTION   PROCEDURE 

 

           An examination of (8) shows that the input impedance Zin is a complicated 

function of the variables a and Xm, due to the multiplication and division involving the 

complex impedances Zp, Zn and Zsh. It is thus very difficult to solve (9) using 

conventional techniques, i.e., rewriting (9) as two nonlinear equations in and solving 

them simultaneously using the Newton Raphson method [16]. In this paper, a method that 

requires much less computational effort is used for solving (9). For this purpose, the 

following impedance function is first established: 

 

 Z(a, Xm) = [(Rin + RL /a)2 + ( Xin + XL + Xse)2 ]1/2                                     (12) 

 

           Equation (9) is satisfied when the function in (12) is equal to zero (i.e., a 

minimum). The solution of (9) is thus reduced to a function minimization problem. To 

minimize the function Z, the pattern search method developed by Hooke and Jeeves [4] 

has been applied. The method relies only on function evaluations, and employs two 

strategies, namely exploratory moves and pattern moves, in order to arrive at the 

optimum point. For normal operation of an SEIG,  a must be lower than that of the PU 

speed denoted by b and Xm must be less than the unsaturated value Xmu, hence b and Xmu 

can in general be chosen as initial estimates of a and  Xm respectively for starting the 

search procedure. But when the load impedance is small, it may be necessary to use 

smaller initial values, say 0.95b, in order to reduce the number of function evaluations. 

To facilitate discussion, a parameter called the compensation factor is defined as follows: 

 

K = (Csh / Xse) = (Xsh / Cse)                                                                                (13) 

                                      

where Xse and Xsh are the reactance of the series compensation capacitance and shunt 

excitation capacitance, respectively.  

 

V.          PERFORMANCE   ANALYSIS 

 

             Figure 2 shows the circuit connection of a delta-connected induction generator 

with asymmetrically connected terminal impedances. To simplify the analysis, all the 

circuit parameters have been referred to the base frequency referred as fbase by applying 

the PU frequency and the per-unit speed b [14]. Thus, the per-unit slip of the SEIG is (a-

b) /a and each voltage shown in Fig. 2 has to be multiplied by in order to give the actual 

value. The circuit model shown in Fig. 2 can be used to study practically all modes of 

unbalanced operation of the SEIG in which zero-sequence quantities are absent. By 

assigning appropriate values to the terminal impedances, a specific unbalanced operating 

condition can be simulated. 

 

            A star-connected SEIG can also be analyzed by first transforming the generator to 

an equivalent delta-connected machine whose per-phase impedance is three-times the 

actual star-connected value. In the case of star-connected load impedances and excitation 

capacitances with isolated neutral points, star–delta transformation can likewise be 

applied to yield the equivalent delta-connected impedance values. After these 
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transformation procedures, the circuit will be reduced to the generic form as shown in 

Fig.2. For loads to be supplied by a four-wire system, a delta–star connected transformer 

can be placed between the generator and the loads so that zero-sequence currents are 

excluded from the SEIG. With appropriate impedance transformations, the system is 

again reduced to that as shown in Fig. 2. 

 

                In the present analysis, the method of symmetrical components is employed in 

order to account for the unbalanced circuit conditions. Since there is no active voltage 

source, the SEIG may be regarded as a passive circuit when viewed across any two stator 

terminals. For convenience, -phase is chosen as the reference and the input impedance of 

the SEIG across terminals 1 and 3 in Fig. 2 will be considered. Adopting the motor 

convention for the phase currents, the following “inspection equations” [11] may be 

written: 

 

        V = VA                                                                                                               (14)  

 Zero sequence voltages and current are absent. 

VA + VB + VC = 0                                                                                                      (15) 

 For  C-phase 

I1  = Vc Y1 =  Vc  / Z1                                                                                                (16)  

For  B-Phase 

VB/Z2 = VB. Y2   =  I2                                                                                      (17)  

I1  = IB - IC + I2                                                                                          (18) 

I = IA - IB – I2                                                                                          (19) 

 

In (16) and (17), Y1 and Y2 are the effective externally connected admittances across C-

phase and B-phase, respectively. Equation (15) implies that zero-sequence voltages and 

currents are absent in the SEIG. Solving the above equations in association with the 

symmetrical component equations for a delta-connected system [12], the positive-

sequence voltage Vp and negative-sequence voltage Vn can be determined: 

 

Vp  =  √3 V [Yn + Y1 (e -jπ / 6  / √3) + Y2 (e jπ / 6  / √3)] / [Y1 + Y2 + Yp + Yn  ]                 (20) 

 

Vn  =  √3 V [Yp + Y1 (e jπ / 6  / √3) + Y2 (e -jπ / 6  / √3)] / [Y1 + Y2 + Yp + Yn  ]                 (21) 

 

The voltage across terminals 1 and 3 in Fig. 2 is given by 

 

V = (Vp / √3)(h-h2)[Y1+Y2+Yp+Yn ] / [ h Y2 +(h-h2) Yn - Y1 h2 ]                           (22) 

 

Where h is the complex operator e( j 2π/3 ) .The input current I is given by ;  

 

I = (Vp/√3)(h-h2)[(Y1+Y2)(Yp+Yn) + (3YpYn+Y1Y2)] / [hY2+(h-h2)Yn-Y1h2]        (23) 
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From (22) and (23), the input impedance Zin of the SEIG when viewed across terminals 1 

and 3 is given by 

 

Zin = (Y1 + Y2 + Yp + Yn) / [ (Y1 + Y2) (Yp + Yn) + 3 Yp Yn + Y1 Y2]                      (24) 

 

Both Yp and Yn are functions of the per-unit frequency  a and the magnetizing reactance 

Xm, hence the input impedance of the SEIG may be written as: 

 

Zin  = Rin (a, Xm) + j Xin (a, Xm)                                                                (25) 

From (24), the SEIG system of Fig. 2 may be reduced to the circuit has been shown in 

Fig. 3. Applying KVL to the latter circuit, 

 

I (Z3 + Zin) = 0                                                                                                        (26) 

Current I can not = 0, hence 

(Z3 + Zin) = 0                                                                                                          (27) 

The complex equation (27) must be solved to determine the Xm  . After a and Xm have 

been determined, the positive-sequence air gap voltage is found from the magnetization 

curve. The generator performance can then be computed using (14)–(23) together with 

the symmetrical component equations. 

                         
                     Fig. 3. Simplified circuit of three-phase SEIG. 

 

  

VI.   SOLUTION TECHNIQUE 

 

            The input impedance Zin as given by (24) involves the generator admittances Yp 

and Yn whose real and imaginary parts are high-order polynomials of a and Xm. Due to 

the algebraic manipulations prescribed by (24), both and are complicated functions of the 

above two variables. It is thus extremely difficult to solve (27) using conventional 

techniques such as the Newton–Raphson method [1] or the polynomial method [13], due 

to the complicated mathematical derivations required. To reduce the computational 

efforts, a function minimization technique is employed for solving (27). This is based on 

the observation that, for given values of Xm and a, the input impedance Zin can be 

computed readily. It can be shown that the values of Xm and a that satisfy (27) will also 

result in a minimum value (of zero) in the following scalar impedance function: 

 

Z(a, Xm) = [(R3 + Rin)2 + (X3 + Xin)2]1/2                                                                     (28) 
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where R3 and X3 are respectively the equivalent series resistance and reactance of the 

terminal impedance Z3. This method employs two search strategies, namely exploratory 

moves and pattern moves, in order to arrive at the optimum point. A function evaluation 

is required each time an exploratory move or pattern move is to be made. For normal 

operation of an SEIG, is slightly less than the per-unit speed  b while Xm is less than the 

unsaturated value Xmu, hence b and Xmu could in general be chosen as initial estimates for 

a and Xm for starting the search procedure. Over a wide range of load and for various 

unbalanced cases, convergence can be obtained in 350 to 450 function evaluations for the 

experimental machine. Subsequent research on the Steinmetz connection for SEIGs 

reveals that additional circuit elements are required in order to achieve perfect phase 

balance. Based on this result, a modified Steinmetz connection (MSC) for a three-phase 

SEIG is proposed in this paper. Fig. 4 shows the circuit connection of the MSC, where all 

circuit parameters have been referred to the base frequency. The impedance Z3 across –A 

phase (the reference phase) consists of the main load resistance RL3 and the auxiliary 

excitation capacitance in parallel. The impedance Z2 across B-phase (the lagging phase) 

consists of the main excitation capacitance C2 and auxiliary load resistance RL2 in 

parallel. Compared with the original Steinmetz connection [22], it is seen that the 

auxiliary resistance RL2 and the auxiliary excitation capacitance C3 have been introduced. 

For a practical SEIG system, RL2 could be local loads such as lighting, storage heating, or 

battery charging. Alternatively, RL2 could be a portion of the remote loads. The three-

phase SEIG with MSC can also be analyzed using the general method described in 

Sections V and VI. In this case, RL2 is equal to zero while Y2 and Y3 are the resultant 

admittances connected across phase A and B  phase , respectively. 

 

A.    Conditions for Perfect Phase Balance 

 

              Figure 5 shows the phasor diagram of the three-phase SEIG with MSC under 

balanced conditions, it being assumed that the positive- sequence impedance angle  Φp   

is greater than 2π/3  radian. The line current IL2 flowing into terminal 2 consists of the 

current through the main excitation capacitance C2 and the current IR2 through the 

auxiliary resistance. Meanwhile, the line current IL3 flowing into terminal 3 is contributed 

by – IR3 (where IR3 is the main load current) as well as – IC3 (where IC3 is the current 

through the auxiliary capacitance C3 ). The current components IR2 and IC3 enable 

balanced line currents of the SEIG to be synthesized. A careful study of the relationship 

between the current and voltage phases in Fig. 5 presenrs the under perfect phase balance, 

the angle between and is equal to  radian. while the angle γ between  IC2 and  IL2 is equal 

to (Φp -2π/3) radian. while the angle δ between  - IR3 and  IL3 is equal to (5π/6 - Φp) rad.  

Since each current in the phasor triangles opq and omn may be expressed in terms of the 

phase voltage and the associated admittance, conductance or susceptance, the following 

relationships can be derived; 

 

 G2 = √3 ׀  Yp ׀  Sin (Φp - 2π /3)                                                         (29)                                                       

 B2 = √3 ׀  Yp ׀  Cos (Φp - 2π /3)                                                        (30) 

 G3 = √3 ׀  Yp ׀  Cos (5 π/6 Φp - Φp)                                                   (31) 

 B3 = √3 ׀  Yp ׀  Sin (5 π/6 Φp - Φp)                                                    (32) 
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Where G2 = a / RL2 ; B2 = a2 2π fbase C2;  G3 = a / RL3 and B3 = a2 2π fbase C3. 

 

 

                                 
 

                     Fig. 4. Modified Steinmetz connection (MSC) for three-phase SEIG. 

 

                                          
 

             Fig. 5. Phasor diagram for SEIG with MSC under perfect phase balance δ 

 

            When Φp is greater than 2π/3 radian (which corresponds to a heavy load 

condition), G2  is positive and perfect balance can be obtained with all four circuit 

elements in Fig. 4 present. When  Φp is equal to 2π/3  radian, G2 vanishes showing that 

phase balance can be achieved with the auxiliary load resistance removed. Under this 

condition, , and  √3 Yp =B2, (1/2)√3 Yp =B3, (1/2)3 Yp = G3 . When Φp is less than 2π/3  

radian, however, G2 is negative and perfect phase balance cannot be obtained with 

passive circuit elements. Equation (32) shows that B3 vanishes when Φp  = 5π/6 radian, 

which implies that the auxiliary capacitance C3 can be dispensed with. When Φp exceeds 

5π/6 radian, B3 becomes negative, implying that perfect balance can be achieved with an 

auxiliary inductance across A-phase. In practice, however, the full-load power factor 

angle of an SEIG ranges from 2π/3 radian to 4π/3 radian, hence it is very unlikely that an 

inductive element need to be used. 
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VII.            SELECTION OF LOAD AND  PHASE CONVERTER  

 

                 A practical design problem is, for a given speed and main load Resistance RL3, 

from (29) – (32), it is observed that G2 , B2, G3  and B3 are all functions of the variables 

Yp and Φp  which depend on the terminal impedances. An iterative procedure is therefore 

required to give perfect phase balance. For convenience, Φp  can first be specified while 

Φp  is to be determined during the iterations. The iterative procedure may be summarized 

as follows: 

 

1) Input the per-unit speed and specified value of Φp.   

2) Assume an initial value of the per-unit frequency ‘a’. 

3) For a given value of main load resistance RL3  , compute |Yp | from (29) using the  

    current value of a. 
4) Compute B2 , G3 , B3 and using (30) – (32). 

5) Compute Y2 and Y3  (hence R3 and X3 ) in Fig. 2, using the values of circuit elements  

    obtained in steps  (3 and 4). 

6) Determine  a and Xm using the Hooke and Jeeves method 

    outlined in the section VI. 

7) Repeat steps (3 – 6) until the values of in successive iterations 

    is less than a specified value. 

8) Compute the values of phase converter elements and performance 

    of the SEIG using the final values of  a and Xm . 

 

 

VIII. CONCLUSION 

 

               The pattern search method presented by Hooke and Jeeves has been applied for 

the determination of the per unit frequency and magnetizing reactance. Due to the phase-

balancing action of the excitation capacitance and the load compensation effect of the 

series capacitance, very good phase balance is obtained over a wide range of load current. 

With an appropriate choice of shunt and series valus of the excitation capacitances. 

Balanced three-phase operation is achieved at a certain load, giving good winding 

utilization, a large power output, high efficiency, and a small voltage regulation.  
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                                                                        APPENDIX  

 

The positive-sequence impedance Zp and negative-sequence impedance Zn of the 

induction machine are given as follows: 

                                     
 

Fig. 6. Positive-sequence impedance Zp of induction machine. 

 

                                     
 

Fig. 7. Negative-sequence impedance Zn of induction machine. 


