
THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 400 Copyright ⓒ 2019 Authors

Test Case Generation Techniques

Anik Acharjee*, Dr. Amar Singh*

*School of Computer Science and Engineering, Lovely Professional University, Phagwara,

Jalandhar, India

Abstract— Software testing is tedious and intensive task in Software Development Life Cycle.

It includes verification of requirement specification, analysis, quality improvement and many

more. In recent survey, it has been found that maximum amount of the time, cost and effort are

devoted for Software Testing. To analyze and debug the desired software, manual testing is

ideal for small-level software. To test the complex and large-sized software, automatic testing

can be preferred to reduce the time, effort and cost. Various advanced techniques like genetic

algorithms, evolutionary computation, soft computing etc. have been already used to generate

adequate and prominent test cases. In this paper, various test case generation techniques have

been reviewed and analyzed for better improvement of the software testing.

Index Terms— Test case generation techniques, testing, software testing, test cases,

I. INTRODUCTION

Testing phase plays an ideal and prominent role to validate the requirement specification,

analysis, design and finally code as per the user requirements. Due to which, the size of the

software is gradually increasing. In the past decades, the Line of Code (LOC) is quite high.

Such an extraordinary rise in the size of the software has created various issues for the testers.

In every industrial and research organization, more stress are imposed to discover the

efficient automatic software testing techniques. These techniques can be used to increase the

quality of the software that needs to delivery to the end-users or customers. These techniques

can be utilized to manipulate test cases for software testing purpose. The test cases can be

manipulated automatically by using some test tools or writing the test cases manually. In

recent times, various adequate techniques are used. Basically, there are two approaches for

generating test cases using such techniques. The first approach, i.e., designing test cases

from requirements and design specifications is much more adopted as compared to the

second approach. The second approach, i.e., design test case using code is bit complex and

composite.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 401 Copyright ⓒ 2019 Authors

In the literature, it is found that test case generation techniques can be categorized into two

parts – Hard Computing based Test Case Generation Techniques and Soft Computing based

Test Case Generation Techniques. The former includes Specification-based Test Case

Generation, Sketch Diagram-based Test Case Generation and Source Code-based Test Case

Generation techniques. The latter one includes Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO) and many more. It can be illustrate

with a suitable diagram, as follows –

Figure - 1

In this paper, all such techniques are reviewed and analyzed properly to know and understand

of how to generate the test cases automatically.

II. LITERATURE SURVEY

Specification-based Techniques are basically used to manipulate test cases from formal

requirements specification [1]. Here, specification documents are used more often. It

elaborates what the system will perform without elaborating how it will work. The software

engineer knows all the functionality work of the software. Such specification documents can

be utilized to inherit the desired output for the test data. If testing is done at the initial stage of

the software development, it can reduce the major costs of testing. Generating the test from

the specification will help the test engineers to find out the problems and gradually save time

and resources. Some of the drawbacks of such technique are sometimes, it is difficult to

analyze the formal documents which directly or indirectly affects the project budget. More

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 402 Copyright ⓒ 2019 Authors

manual efforts are required to manipulate and generate the test cases as contrast to automatic

generation processes.

Sketch diagram-based Techniques are basically used to manipulate test cases by using UML

Use Case diagram [1]. Many of the sketch diagram-based techniques are used for traditional

and web-based applications. Use Case can be used to generate test cases to initiate testing

process [2]. The author in [2] proposed three steps – (1) manipulate use-case scenarios (2)

locate at-least single test case for each scenario and (3) identify data values for testing.

Nilawar et. al. have mainly tested web-based applications [3]. The author in [3] focused on

black box testing. This testing allows the test engineers to derive sets of input conditions. The

author highlighted that the black box testing is the most fit and desirable to test web-based

applications rather than any other applications.

Source Code-based techniques basically use the control flow information which can be used

to recognize the set of paths to be covered completely for testing and then manipulate the test

cases for those paths [1].

The author in [4] conveyed that software testing approaches can utilize in identifying the

occurrence of errors or bugs in the developed software. Here, the challenges of software

testing are discussed and how software testing techniques can be evolved gradually are also

discussed. Generating the effective test cases is a difficult task. Due to which, there is a need

of computerized test case generation and heuristic techniques required.

K.P.Yadav et. al. in [5] focused on different types of challenges faced for generating test

cases by the testing team and UML techniques can be used for such challenges. The main

activity in software testing is to produce or generate test cases. Since such tasks has become

the critical work, so we can apply new and adequate techniques to have better results. The

author focuses that automation of test case manipulation can be done in the initial stage of

Software Life cycle. This can reduce such challenges in generating test cases.

The author in [6] highlights the problem of test case generation. Previously, Particle Swarm

Optimization (PSO) can be used for generating test cases. But it leads to various problems

like population diversity, low accuracy etc. Due to which, a self-adaptive PSO based software

testing case optimized algorithm is suggested. It overcomes the performance and quality of

standard PSO.

Sheng Y et. al. in [7] highlights AI (Artificial intelligence)-based algorithm. According to

author, AI-based algorithms can accomplish superior than greedy-based algorithms. The two

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 403 Copyright ⓒ 2019 Authors

different methods are – PCTG-Av , it circumvent the option of clashing test cases and PCTG-

Re, it replaces the conflicting test cases.

The author in [8] discussed the cost of testing in the software development life cycle (SDLC).

The cost of the testing in the maintenance phase is quite high, with compare with the total

cost. The two popular techniques i.e. test case selection and the test case prioritization can be

used for the optimizing testing techniques. These techniques can be incorporated with

different soft-computing algorithms for better results. Modified Ant Colony Optimization

(ACO) can be used for better test case generation. It will result in finding out the maximum

fault in minimum time.

The author in [9] highlight about the automatic test case generation. Test cases are

manipulated automatically, test errors are eliminated gradually. In order to reduce the size of

test suite, combinatorial testing has been suggested. It provides high reliability compare to

others.

Naveen Shaillu et. al. in [10] discussed software testing is expensive process. Generating

automatic test case data, i.e., automated test case manipulation is the main stage of software

testing phase. The author focuses on Parallel Big Bang-Big Crunch soft computing approach

for generating automatic test case generation. It has been performed on four real world

programs like Is Prime (ISPRIME), Triangle classifier (TC), Quadratic Equation Program

(QUAD)and Car Brake Controller System (CBCS). It has been found the PBB-BC based

approach outperforms BB-BC based approach for automatic test data generation.

The author in [11] presented efficiency of path-wise testing can be enhanced by the

manipulation of the diverse-path test cases. To improve such efficiency, a new study has been

proposed. Here, particle swarm optimization (PSO) algorithm with metamorphic relations

(MRs) can be used. Firstly, test case is generated using PSO algorithm and secondly, fresh

test cases are generated frequently using MRs between test cases.

The author and his team in [12] focused on regression testing. We can generate test cases by

using regression test case generation for the modified code. For that, Multi-agent systems for

regression test case manipulation by using standard UML models can be used.

Nargis Akhter et. al . in [13] focused on how to achieve more test coverage. Generating test

case generation with more test coverage will be the effective method. Due to which, P3PGA

algorithm is used. It not only improves the quality of the test data, but also make it much

more efficient and effective to cover the maximum paths.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 404 Copyright ⓒ 2019 Authors

Miranda MA et. al. in [14] focused on UML Model. The author proposes the implementation

of language of use case to automate models. A specific tool has been used, termed as

LUCAMTool. Tests has been performed, both in real as well as simulated environments.

Panichella A et. al. in [15] focused on how to cover multiple test branches. Existing

approaches either focus on single target at a time or cluster all targets. To overcome this

problem, the author proposed Dynamic Many-Objective Sorting Algorithm. This will resolve

the problem of branch coverage.

Bo L et. al. in [16] highlights on generating test cases automatically. Existing test generation

techniques consumes lots of time and effort. Due to which, an automatic and efficient

approach is presented. This approach helps in manipulating test cases for thread-safe classes.

It signifies in improving ability without spoiling bug finding capacities.

The author and his team in [17] explained about automated test suite generation (ATSG).

ATSG is one of the important and crucial topics of software engineering. The author

implemented a tool called mapping the effectiveness of test automation (META). This tool

can be basically used effectively to select worthy ATSG techniques. These techniques can be

applied to new software systems.

Liu F et. Al. in [18] focused on automatic test data generation for path coverage (ATDG-PC).

This can be applied to Cloud Computing like Hadoop programmes. These programmes are

difficult to find out the high-rate path coverage. This can be used to reduce test cases for path

coverage, as compare to other metaheuristic algorithms.

Gupta N et. al. in [19] highlights on software testing. It can be used and enclosed as an

optimization problem to re-solve problems for enormous optimizing techniques. The author

also presented on test case manipulation, election, depreciation and prioritization of testing.

Yousaf N et. al. in [20] focused on testing the web applications. Testing the web applications

is bit composite and stagnant process. Interaction Flow Modeling Language (IFML) can be

used for UI (User-Interface) testing. Later on, the author introduced novel model-based

testing approach. This can be used for IFML. This approach furnishes test cases at the initial

stage of the development.

Huang H et. al. in [21] discussed about the computerized test case manipulation based on

path coverage (ATCG-PC). It will reduce the cost of generating test cases. The author

compared this approach with classical differential evolution (DE). It is difficult for DE to

generate test cases. This achieves higher path coverage rate .

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 405 Copyright ⓒ 2019 Authors

Liu P et. al. in [22] discussed about MTTool. It is model-based test tool. It can be used for

test modeling and generating test cases from the model. This tool can be used for Extended

Regular Expression (ERE)-based testing.

Feyzi F et. al. in [23] focused on the Bayesian networks. The author presents a unique test

data generation called Bayes-TDG, which is based upon the principles of Bayesian networks.

It can be used for path-coverage ratio for a particular programme under test (PUT). The

author proposed path selection strategy for generating test cases. The method is adequate and

provide effective generated test suite.

Bian Y et. al. in [24] discussed on regression testing. The author introduced Epistatic Test

case Segment (ETS). It can be used for multi-objective search-based regression Test Case

Prioritization (MoTCP). The author proposed ETS-based pheromone update strategy. The

proposed can be utilized to improve the performance of ACO. This is respect to efficiency

and effectiveness for search-based MoTCP.

Mukherjee R et. al. in [25] highlights about Test Case Prioritization (TCP). TCP techniques

are used in Object-Oriented Programs (OOPs), so author tried to study on prioritization of

JUnit test cases. The author has examined that multi-objective Genetic Algorithm (GA)

performs well as compared to single objective prioritization.

Bashir MB et. al. in [26] explored on mutation testing. The mutation testing is bit lavish as it

prerequisite enormous mutants. In this scenario, different search-based approaches or

algorithm identical to Genetic Algorithm (G.A) are used. It will assist to automatic test case

generation to shorten the amount. The author explored that the genetic algorithm can provide

optimum test cases in minimal amount of strives.

Jan S et. al. in [27] have generated automatic tests in Web Applications. Automatic test case

can be generated in Web Applications by using XML. It is basically accomplished by

automatically generating XML injection attacks.

Li H et. al. in [28] explored about the generation of test data. It is the sole of the vital factors

in Software Testing. Sometimes, a well-manipulated test suite cannot be identifying the bugs

or errors in the software system. It might able to reduce the cost incorporated with software

testing.

Hooda I et. al. in [29] focused on generating test cases. Software testing is one of such task,

which takes huge time and effort in developing the software and its quality improvement. To

test the complex and composite software, testing needs to be done automatically. Different

and varieties of tools are available, which can be used for such purpose. The author

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 406 Copyright ⓒ 2019 Authors

highlighted on various techniques like neural networks, fuzzy logic, soft computing,

evolutionary computation and so on, which can be utilize to manipulate test cases

automatically.

Windisch A et. al. in [30] tries to utilize the Genetic Algorithms (GAs) to explore and find

out appropriate and similar test cases. The author tries to compare Particle Swarm

Optimization (PSO) with Genetic Algorithms (GAs), with refer to the evolutionary structural

testing. Various experiments have been executed whose result shows that PSO outperforms

GAs.

Rodriguez J et. al. in [31] focused on GUI (Graphical User Interface) test cases. GUI test

cases should be of good quality, which can be applied for application testing. Various

parameters like coverage criteria and partial coverage can be used to measure the test cases

(or set of test cases). The author has used Ant Colony Optimization algorithm for creating

and generating test cases.

Nayak N et. al. in [32] highlights on evolutionary structural testing. Manipulating the test

case automatically is sole of biggest circumstances. An approach termed evolutionary

structural testing can be used computerized. It basically uses Genetic Algorithm to

accomplish such activities. It has been found that Particle Swarm Optimization (PSO)

surpasses the GA. Such approach can be used for data flow testing.

Arifiani S et. al. in [33] suggested Ant Colony Optimization (ACO) as one of the best search

algorithm. The author suggested statistical testing technique can be applied on the Gray Box

Testing using the ACO algorithm. A comparison is carried out between the UML State

Machine Diagram and the source code to manipulate test case using ACO statistical testing.

Wang Z and his team in [34] focus on automatic manipulation of the software test case. This

is sole of the vital and decisive parts in Software Testing. The technology used for Software

Test Case Generation automatically has been proposed in this paper to improve and enhance

the quality of software testing. This technology is imposed along with the advanced PSO

algorithm. The result shows lower time cost and high performance in automatic manipulation

of the software test case.

Khan R et. al. in [35] highlights on automatic software testing process. Various and enormous

research and experiment has been carried out in automatic software testing process. The

author presented a Hybrid Genetic Algorithm for manipulating test data computerized. This

can be done for mutation testing.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 407 Copyright ⓒ 2019 Authors

Khan R et. al. in [36] highlights test cases needed for the process of software testing. In the

survey, it has been found that lots of money used to be invested for software process. Various

test cases are utilized as input to test the software process and check for the final output. So,

generating the test cases has been pointed out as one of the NP problem. So to accomplish

such task, enormous nature inspired optimization algorithms are utilized. Here, the author

focused on genetic algorithm for manipulating automatic test cases.

Gongge G et. al in [37] discussed about test case auto-generation model. This model can be

used to generate test cases. It is possible basically on the basis of knowledge such as case

studies, rules and etc.

Lin P et. al. in [38] proposed a noble algorithm called adaptive genetic algorithm (AGA).

This can be utilized for test case generation. Firstly, this algorithm is used for generating test

cases. Secondly, a tool called genetic automatic test case generation (GATG) is used for the

task of generating test cases. Both the adaptive genetic algorithm and the automatic tool are

proposed in this paper for generating test cases.

Liu A et. al. in [39] highlights on the input variables that are used in the function. Proper

analysis needs to be done for function call path. Various input variables are used in the

function which can be used for automatic test cases. Sometimes, different variables in test

cases are used, compare to the input variables. To have efficient and accurate test cases,

proper information needs to be extracted from the function call diagram and control

conditions.

Chen L et. al. in [40] presented state based model called IFA (interaction finite automation).

It analyses the system’s behaviours, listed in use cases. The algorithm for evolution from use

cases to IFA and creating test cases from IFA is also presented in this paper. This process can

be done automatically.

Mirzaaghaei M et. al. in [41] focused on generating test cases during software evolution. Due

to changes in the code, it is not possible to manipulate or generate the test cases properly.

Here, author proposed automatic repairing and generating the test cases in the whole software

evolution. This will help in expense and time consuming activity. It can be used for test suite

evolution.

Khan R et. al. in [42] highlights on path testing. Automatic test case generation can be

optimized by using genetic algorithm (G.A.). Various software industries invest lots of wages

to test the software testing process. To reduce such huge expenses, a method has been

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 408 Copyright ⓒ 2019 Authors

proposed with genetic algorithm. It tries to check out for path coverage by using a set of

inputs.

Automatic test case generation can be accomplished by using mutation testing in [43]. The

paper summarized various technologies used for mutation testing for test data generation. It

focuses on time, cost and code coverage.

Li K et. al. in [44] presented a model for manipulating test data by utilizing upgrade ant

colony optimization and path coverage criteria. Path testing can be used for identifying bugs

since it performs well for higher error coverage. Several experiments have been carried out

and it has been found that this mechanism can be carried out for improving the efficiency of

test data generation.

Sayyari F et. al. in [45] proposed a solution based upon ant colony optimization algorithm

and model-based testing. It can be used for developing test paths faster with minimum time,

cost and maximum coverage.

Biswas S et. al. in [46] proposed ant colony optimization based algorithm. This can

manipulate bunch of optimal paths and prioritize paths properly. It can also generate the test

data sequence. This approach guarantees full software coverage with minimal redundancy.

Arifiani S et. al. in [47] showed that ant-colony optimization (ACO) algorithm outperforms

other algorithms like search algorithm, genetic algorithm etc. It can be used for generating

quality test data and its firmness. This approach can be used for Gray Box testing.

Prajapati N et. al. in [48] focused on Component-Based Software Engineering (CBSE). The

Ant-Colony Optimization algorithm can be utilized in such mechanism. It can be utilized for

optimizing auto-generated code and prioritize optimal path. This can enhance the testing

phase with less complexity. The same algorithm can be used for generating the test data for

Quality Assurance (QA) based model, presented for CBSE.

III. Conclusion –

In this paper, various techniques have been reviewed. Such techniques can be classified into

two parts – Hard Computing based Test Case Generation Techniques and Soft Computing

based Test Case Generation Techniques.

It is found in the literature that Soft Computing based Test Case Generation techniques

perform better than the Hard computing based techniques. Various soft computing based

algorithms like GA, ACO etc. are used for test case generation automatically. Other soft-

computing based algorithms can also be used for generating the test case generation at the

initial stage of the software development.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 409 Copyright ⓒ 2019 Authors

REFERENCES

[1] Kosindrdecha N, Daengdej J. A test case generation process and technique. J. Software

Eng. 2010;4:265-87.

[2] Heumann J. Generating test cases from use cases. The rational edge. 2001 Jun;6(01).

[3] Nilawar M, Dascalu S. A UML-based approach for testing web applications. Master of

Science with major in Computer Science, University of Nevada, Reno. 2003 Aug.

[4] Jain N, Porwal R. Automated Test Data Generation Applying Heuristic Approaches—A

Survey. InSoftware Engineering 2019 (pp. 699-708). Springer, Singapore.

[5] K.P. Yadav, Saroj Patel, Tannu Arora. Challenges in Automatic Test Case Generation.

Volume 1, 2016. International Journal of Communications.

[6] Jianqi S, Yanhong H, Ang L, Fangda C. An optimal solution for software testing case

generation based on particle swarm optimization. Open Physics. 2018 Jan 1;16(1):355-63.

[7] Sheng Y, Wei C, Jiang S. Constraint test cases generation based on particle swarm

optimization. International Journal of Reliability, Quality and Safety Engineering. 2017 Oct

20;24(05):1750021.

[8] Sushant Kumar and Prabhat Ranjan. ACO based test case prioritization for fault detection

in maintenance phase. International Journal of Applied Engineering Research ISSN 0973-

4562 Volume 12, Number 16 (2017) pp. 5578-5586

[9] Dr. V. Chandra Prakash, Subhash Tatale, Vrushali Kondhalkar , Laxmi Bewoor. A

Critical Review on Automated Test Case Generation for Conducting Combinatorial Testing

Using Particle Swarm Optimization. International Journal of Engineering & Technology, 7

(3.8) (2018) 22-28

[10] Naveen Shaillu, Dr. Amar Singh, Rajesh Chaudhary. AUTOMATIC TEST DATA

GENERATION BY PARALLEL BIG BANG-BIG CRUNCH. Journal of Emerging

Technologies and Innovative Research (JETIR) July 2018, Volume 5, Issue 7

[11] Lv XW, Huang S, Hui ZW, Ji HJ. Test cases generation for multiple paths based on PSO

algorithm with metamorphic relations. IET Software. 2018 May 1;12(4):306-17.

[12] Arora PK, Bhatia R. Mobile agent-based regression test case generation using model and

formal specifications. IET Software. 2017 Apr 5;12(1):30-40.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 410 Copyright ⓒ 2019 Authors

[13] Nargis Akhter, Dr. Amar Singh, Mr. Guljar Singh. Automatic Test Case Generation by

using Parallel 3 Parent Genetic Algorithm. International Journal for Research in Applied

Science & Engineering Technology (IJRASET) Volume 6 Issue VII, July 2018

[14] Miranda MA, Ribeiro MG, Marques-Neto HT, Song MA. Domain-specific language for

automatic generation of UML models. IET Software. 2017 Oct 6;12(2):129-35.

[15] Panichella A, Kifetew FM, Tonella P. Automated test case generation as a many-

objective optimisation problem with dynamic selection of the targets. IEEE Transactions on

Software Engineering. 2017 Feb 2;44(2):122-58.

[16] Bo L, Jiang S, Qian J, Wang R, Wang X. Efficient Test Case Generation for Thread-Safe

Classes. IEEE Access. 2019 Feb 25;7:26984-95.

[17] Oliveira C, Aleti A, Grunske L, Smith-Miles K. Mapping the Effectiveness of

Automated Test Suite Generation Techniques. IEEE Transactions on Reliability. 2018 Jun

8;67(3):771-85.

[18] Liu F, Huang H, Li X, Hao Z. Automated test data generation based on particle swarm

optimisation with convergence speed controller. CAAI Transactions on Intelligence

Technology. 2019 Mar 25;2(2):73-9.

[19] Gupta N, Sharma A, Pachariya MK. An insight into test case optimization: ideas and

trends with future perspectives. IEEE Access. 2019 Feb 14;7:22310-27.

[20] Yousaf N, Azam F, Butt WH, Anwar MW, Rashid M. Automated Model-based Test

Case Generation for Web User Interfaces (WUI) from Interaction Flow Modeling Language

(IFML) Models. IEEE Access. 2019 May 20.

[21] Huang H, Liu F, Yang Z, Hao Z. Automated test case generation based on differential

evolution with relationship matrix for IFOGSIM toolkit. IEEE Transactions on Industrial

Informatics. 2018 Jul 18;14(11):5005-16.

[22] Liu P, Xu Z. MTTool: A Tool for Software Modeling and Test Generation. IEEE

Access. 2018 Oct 1;6:56222-37.

[23] Feyzi F, Parsa S. Bayes-TDG: effective test data generation using Bayesian belief

network: toward failure-detection effectiveness and maximum coverage. IET Software. 2018

Feb 13;12(3):225-35.

[24] Bian Y, Li Z, Zhao R, Gong D. Epistasis based aco for regression test case prioritization.

IEEE Transactions on Emerging Topics in Computational Intelligence. 2017 May

29;1(3):213-23.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 411 Copyright ⓒ 2019 Authors

[25] Mukherjee R, Patnaik KS. Prioritizing JUnit Test Cases Without Coverage Information:

An Optimization Heuristics Based Approach. IEEE Access. 2019 Jun 12;7:78092-107.

[26] Bashir MB, Nadeem A. Improved genetic algorithm to reduce mutation testing cost.

IEEE Access. 2017 Mar 3;5:3657-74.

[27] Jan S, Panichella A, Arcuri A, Briand L. Automatic generation of tests to exploit XML

injection vulnerabilities in web applications. IEEE Transactions on Software Engineering.

2017 Nov 30;45(4):335-62.

[28] Li H, Lam CP. Software Test Data Generation using Ant Colony Optimization.

International Journal of Computer and Information Engineering Vol : 1, No : 1, 2007.

[29] Hooda I, Chhillar R. A review: Study of test case generation techniques. International

Journal of Computer Applications. 2014 Jan 1;107(16).

[30] Windisch A, Wappler S, Wegener J. Applying particle swarm optimization to software

testing. InProceedings of the 9th annual conference on Genetic and evolutionary computation

2007 Jul 7 (pp. 1121-1128). ACM.

[31] Rodriguez J, Rodriguez GD. Automatic generation of GUI test cases using Ant Colony

Optimization and Greedy algorithm. InCIbSE 2015 (p. 209).

[32] Nayak N, Mohapatra DP. Automatic test data generation for data flow testing using

particle swarm optimization. InInternational Conference on Contemporary Computing 2010

Aug 9 (pp. 1-12). Springer, Berlin, Heidelberg.

[33] Arifiani S, Rochimah S. Generating test data using ant Colony Optimization (ACO)

algorithm and UML state machine diagram in gray box testing approach. In2016

International Seminar on Application for Technology of Information and Communication

(ISemantic) 2016 Aug 5 (pp. 217-222). IEEE.

[34] Wang Z, Liu Q. A software test case automatic generation technology based on the

modified particle swarm optimization algorithm. In2018 International Conference on Virtual

Reality and Intelligent Systems (ICVRIS) 2018 Aug 10 (pp. 156-159). IEEE.

[35] Khan R, Amjad M, Srivastava AK. Generation of automatic test cases with mutation

analysis and hybrid genetic algorithm. In2017 3rd International Conference on

Computational Intelligence & Communication Technology (CICT) 2017 Feb 9 (pp. 1-4).

IEEE.

[36] Khan R, Amjad M. Automatic test case generation for unit software testing using genetic

algorithm and mutation analysis. In2015 IEEE UP Section Conference on Electrical

Computer and Electronics (UPCON) 2015 Dec 4 (pp. 1-5). IEEE.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 412 Copyright ⓒ 2019 Authors

[37] Gongge G, Hao Z, Jing Y. Research on automatic generation of Test Cases. In2012

IEEE/ACIS 11th International Conference on Computer and Information Science 2012 May

30 (pp. 428-431). IEEE.

[38] Lin P, Bao X, Shu Z, Wang X, Liu J. Test case generation based on adaptive genetic

algorithm. In2012 International Conference on Quality, Reliability, Risk, Maintenance, and

Safety Engineering 2012 Jun 15 (pp. 863-866). IEEE.

[39] Liu A, Mu Y, Liu X, Zhang Z. Analysis of Input Variable's Influence on Control

Condition in Automatic Test. In2013 5th International Conference on Intelligent Human-

Machine Systems and Cybernetics 2013 Aug 26 (Vol. 2, pp. 347-350). IEEE.

[40] Chen L, Li Q. Automated test case generation from use case: A model based approach.

In2010 3rd International Conference on Computer Science and Information Technology 2010

Jul 9 (Vol. 1, pp. 372-377). IEEE.

[41] Mirzaaghaei M, Pastore F, Pezze M. Supporting test suite evolution through test case

adaptation. In2012 IEEE Fifth International Conference on Software Testing, Verification

and Validation 2012 Apr 17 (pp. 231-240). IEEE.

[42] Khan R, Amjad M, Srivastava AK. Optimization of automatic generated test cases for

path testing using genetic algorithm. In2016 Second International Conference on

Computational Intelligence & Communication Technology (CICT) 2016 Feb 12 (pp. 32-36).

IEEE.

[43] Dave M, Agrawal R. Search based techniques and mutation analysis in automatic test

case generation: A survey. In2015 IEEE International Advance Computing Conference

(IACC) 2015 Jun 12 (pp. 795-799). IEEE.

[44] Li K, Zhang Z, Liu W. Automatic test data generation based on ant colony optimization.

In2009 Fifth International Conference on Natural Computation 2009 Aug 14 (Vol. 6, pp. 216-

220). IEEE.

[45] Sayyari F, Emadi S. Automated generation of software testing path based on ant colony.

In2015 International Congress on Technology, Communication and Knowledge (ICTCK)

2015 Nov 11 (pp. 435-440). IEEE.

[46] Biswas S, Kaiser MS, Mamun SA. Applying ant colony optimization in software testing

to generate prioritized optimal path and test data. In2015 International Conference on

Electrical Engineering and Information Communication Technology (ICEEICT) 2015 May

21 (pp. 1-6). IEEE.

THINK INDIA JOURNAL ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

P a g e | 413 Copyright ⓒ 2019 Authors

[47] Arifiani S, Rochimah S. Generating test data using ant Colony Optimization (ACO)

algorithm and UML state machine diagram in gray box testing approach. In2016

International Seminar on Application for Technology of Information and Communication

(ISemantic) 2016 Aug 5 (pp. 217-222). IEEE.

[48] Prajapati N, Kumar N. Data flow based quality testing approach using ACO for

component based software development. In2016 International Conference on Computing,

Communication and Automation (ICCCA) 2016 Apr 29 (pp. 807-812). IEEE.

