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Abstract 

Real world problems are hard and computationally incentive. Nature based solutions can be a 

great source of inspiration for optimizing challenging problems. Researchers are putting in lot of 

efforts to study and mimic the nature for finding optimal or near optimal solution of a 

problem.Nature inspired algorithms (NIC) can be broadly classified into evolutionary or swarm 

based algorithms based on the source of inspiration. In this paper we will study some of nature 

inspired computing based algorithms like Ant Colony Optimization (ACO), Particle Swarm 

optimization (PSO), Honey Bee Optimization algorithm, Genetic algorithm (GA) along with 

their applications. 
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1Introduction 

Nature has inspired the researchers to propose algorithms for solving a wide range of complex 

computation and optimization problems. Leaning from nature how it handles complex problems 

for which traditional methods do not work effectively will help in developing the intelligent 

system. Nature always evolves and moves towards optimization, using the same concept solution 

of hard real-world problems can be analyzed. Nature has many properties like self organization 

flexibility, robustness, collective work are used to derive nature inspired algorithms. Different 

nature inspired optimization algorithms are classified as swarm intelligence and evolutionary 
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algorithms are derived from nature and are being used by different applications. Researchers and 

scientists have come up with different applications of nature-inspired algorithms ranging from 

engineering design, business planning, water distribution etc with an aim of achieving 

optimization.Optimization means tuning input values for a given function so as tominimize or 

maximize the output [1]. The optimized solution can either be the best solution or the solution 

relatively close to the best solution. The objective of optimization is problem specific which can 

be minimizing cost, energy consumption or maximizing the profit of a business or maximizing 

the network bandwidth utilization. In this paper nature inspired algorithms are discussed along 

with their different applications in real life. 

2. BRIEF REPRESENTATION OF SELECTED NATURE INSPIRED ALGORITHMS 

a) Ant Colony Optimization (ACO) 

ACO algorithm was proposed in early 1990’s by M. Dorigo [2][3][4] which  is based on 

the behavior of ants and a phenomenon known as stigmergy[94] (term introduced by 

French biologist in 1959 and means a mechanism of indirect co-ordination, though an 

environment, between agents and action)  providing ants the ability to find the shortest 

path between ant’s nest and food source by building path from pheromone[95] traces. 

Pheromone is a chemical substance laid down by the ant along their trail which decay 

over time. Path with most intensity of pheromones is the path which is followed by most 

ants. This indirect communication between ants enables them to find the optimum 

solution i.e. shortest path. Algorithm or pseudo code for ACO [5] is presented. 

Algorithm 1 

Begin 

Generate Initialize population and pheromone matrix 

 fitness computation of initial population 

While (stopping criterion not satisfied) do 

Set position each ant as starting node 

Repeat 

For each ant do 

Choose next node by applying the state transition rule 

Apply step by step pheromone update 



THINK INDIA JOURNAL                                                                                         ISSN: 0971-1260 

                                                                                                                                                         Vol-22-Issue-17-September-2019                                                                                

 

P a g e  | 416       Copyright ⓒ 2019 Authors 

End for 

Until every a solution for every node is obtained 

Evaluate fitness of population 

Update best solution obtained 

Apply Pheromone update 

End While 

End 

Ant system can be considered as a graph where the pheromones update for edge Eijjoining nodesi 

and j is performed [6][7] as given below: 

Eij ←  (1 − p). Eij  +  ∑ ∆Eij
k

m

K=1

 

where p is the pheromone decay rate whose value is between (0,1), Total number of ants (m) and 

∆Eij
k is the quality of pheromones laid by the kthant on the edge (i,j). 

Transition probability 𝑝(𝑐𝑖𝑗|𝑠𝑘
𝑝

)of kth ant moving from node i to node j is given by: 

𝑝(𝑐𝑖𝑗|𝑠𝑘
𝑝

)       =                        
𝐸𝑖𝑗

𝛼 ∗ 𝜂𝑖𝑗
𝛽

∑ 𝑐𝑖𝑗 ∈ 𝑁(𝑠𝑘
𝑝

)𝐸𝑖𝑗
𝛼 ∗ 𝜂𝑖𝑗

𝛽   
       𝑖𝑓  𝑗 ∈  𝑁(𝑠𝑘

𝑝
), 

0 otherwise 

                     (1)  

Where 𝜂 is an optional weighting function and 𝜂 = 
1

𝑑𝑖𝑗
, dijis the length of component cij, α and β 

are positive numbers and control the relative importance of pheromone and heuristic 

information.  

b) PSO 

PSOalgorithm was proposed in [98] and is an evolutionary computation techniquebased on 

research of the flock of birds[36] searching a food source[36]. PSO algorithm a birds groupis 

searching for food in an area where only one piece of food is available and birds don’t have the 
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information about the exact location of the food source. Birds know the distance of food source 

from current location is. In this algorithm, all birds of the flock change their velocity based on 

their past experience and by following the bird nearest to the food. Each bird or solution in PSO 

is called particle[99]. Each particle’s coordinates (possible solution in the search space) is 

represented by two vectors position xiand velocity vi. N-dimensional search space[100]of each 

particle can be represented by xi=[xi1,xi2, xi3… xiN] and velocity vi=[vi1, vi2,vi3 … viN]. 

Searching the optimized solution in the search space is based on the particle’s best position pbest 

and best position so far among the entire group of particles gbest. PSO optimization technique 

can be simply represented as: 

vi
n+1 = vi

n
 +c1r1

n(pbesti
n - xi

n ) +c2r2(gbesti
n - xi

n)                  (3) 

xi
n+1  =xi

n  + vi
n+1               (4) 

Where c1 and c2 are positive acceleration constants and r1 and r2are numbers in the range [0,1] 

and are random, pbesti
n is the best possible position of the particlei achieved in n iterations and 

gbesti
nrepresents the most optimist position of the swarm in n iterations. 

Changingthe velocity of particle consideringthe particle’s best performance and the best 

performance by the closest particle the optimum solution is searched. 

Algorithm or pseudo code for PSO [91] is presented below 

Algorithm 2 

Begin 

 For each particle 

 Initialize particle randomly 

 end for 

 Fori=1 until maximum iteration 

  Calculate every particle velocity (use equation 3) 

  Update every particle location  (use equation 4) 

  For each particle do 

 calculate fitness for particle 

if fitness better than the previouspbest then 
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 set fitness value as new pbest 

end if 

 end for 

Choose particle with the best pbest as gbest 

  End for 

  Return gbest 

 End 

c) ABC Algorithm 

ABC algorithm was presented by Karaboga in 2005 [63].In ABC algorithm communication 

about the direction, distance and quantity of nectar at food source is done by waggle dance by a 

honey bee. Bees are grouped into three categories employed foragers, unemployed foragers and 

experienced foragers [63, 64]. Bees that have no information about the food source are classified 

as unemployed. Unemployed foragers can either start searching for food source from a scratch 

without any prior knowledge and are called Scout Bee or can be a Recruit bee thatuses the 

information obtained by the waggle dance of another bee about the food source. Recruit bee after 

watching waggle dance of different bees decides about the most profitable food source. The 

recruited bee when finds the food source and starts extracting energy, it is classified and 

employed bee. Employed bee also shares information about the food source. Experienced bees 

use their prior knowledge for discovering new food source near their hives. 

 ABC algorithm uses exploration and exploitation for finding the best solution. After the 

food source is explored the bee memorizes the location and starts exploiting it. The bee loads the 

nectar from food source and unloads the nectar to a food store at their hive. Now the bee can 

abandon the food source, communicate with other bees about food source by waggle dance or 

keep forging the food source himself without any recruitment. 

Algorithm or pseudo code for ABC [65] is presented below 

Algorithm 3 

Begin 

Initialize the food source positions. 
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Evaluate the food source 

Fori=1 until maximum requirements meat 

Produce the new food sources 

Move the recruits to the food sources and determine the nactor 

Apply greedy selection 

Calculate the fitness and probability values 

Memorize the  best food source found so far i.egBest 

End for 

Return gBest 

End 

 

d) GA 

 Genetic Algorithm (GA) is a evolutionary method which was presented by “John 

Holland” in early 1960s [67]. GA is based on the natural evolution of a biological species and 

can be applied for stochastic search or for finding optimal or near-optimal solution. GA is 

inspired by the process of selection of a solution from a population based on (the theory of 

Darwin) a fitness function (maximization or minimization). Solution space comprising of 

Individuals also known as chromosomes matures with every generation so as to provide a 

optimal or near optimal solution. Individuals as selected based on a selection method (roulette 

wheel, Boltzmann selection, tournament selection, rank selection, steady stare selection etc) from 

population for reproduction. Cross-over method is applied for produce a new chromosome by 

combining parts of parents. Produced chromosome retains the useful features of the parents and 

ignores less useful features.  

In order to avoid local optimality [68] some (low probability) of the offspring are 

mutated. Mutation causes genetic diversity by bringing a small change in the chromosome’s 

element allele. Some the common mutation techniques are power mutation, uniform mutation, 

Gaussian mutation, shrink mutation etc. Chromosomes with the ‘best fitness’ value are retained 
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in the new population. This process continues until the desired optimal solution is obtained or 

process continues for max number of generations. 

 

Algorithm or pseudo code for GA [92,93]  is presented below 

Algorithm 4 

Begin 

 Input population, cross-over probability, mutation probability 

 Initialize chromosomes randomly 

 While desired optimal solution or max generations are not reached do  

   update chromosomes by crossover and mutation operations 

Compute the fitness of each chromosome 

   Save fitness values of chromosomes 

   Select chromosomes by using selection method for next generation 

 EndWhile 

  Report chromosome with best fitness value as an optimal solution 

End 

e) Other Algorithms 

 Researchers are continuously working on different new nature inspired algorithms to find 

and optimal solution.NIC algorithms can be classified into different classes like bio-inspired, 

swarm intelligence (SI) based, chemistry-based/physics and others Some of the well known 

algorithms are Cuckoo search optimization (CSO), Bat algorithm, Paddy Field Algorithm,flower 

pollination algorithm, Grey wolf optimizer (GWO), Glowworm Swarm Optimization, Firefly 

algorithm, Cat Swarm Optimization (CSO),Cuckoo search, Monkey search,Eagle strategy, 

Shuffled frog leaping algorithm, Big bang-big Crunch, Black hole,Gravitational searchetc [88]. 

Researchers are working on these algorithmsso as to increase their performance. For example 

“Parallel Big Bang–Big Crunch Global Optimization Algorithm” [89] was presented so as to  

increase the performance of Big bang-big crunch(B3C)[97].“Modified cuckoo search algorithm” 

with rough sets for feature selection was proposed so as to handle  high dimensionality data[90]. 

3. Applications of few selected nature inspired algorithms 
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Name of 

Algorithm 

Representation Operations Applications Control 

Parameters 

ACO Undirected Graph Pheromone 

trail, update, 

evaporation,  

measure 

Traveling Salesman Problem 

(TSP)[8,9],Text feature selection[10], 

Vehicle routing problem[11, 12], Face 

recognition [13], Cloud task scheduling 

[14], Training feed-forward neural 

networks [15], Structure-, based drug 

design [16], Protein folding 

problem[24],DNA sequencing[30],Data 

mining[17,18], Multi-purpose reservoir 

operation[19], Process 

planning[20],Graph coloring[21], Digital 

image processing [22, 23], Quadratic 

assignment[25,26,27], Supply chain 

management[28, 29], Multicasting ad-

hoc networks [31,32,33],Project 

scheduling [34,35] 

Total number of 

Ants, pheromone 

decay rate, iteration. 

 

 

PSO 

 

Dimensionality of 

vector for the 

position,speed,beststate 

and is 

Real-valued 

 

Initializer, 

updater and 

evaluator.  

 

Multimodal biomedical image 

registration[38], Iterated Prisoner‘s 

Dilemma[39], Classification of 

instances[40], Feature 

selection[41,42,43,44], web service 

selection[45], Power System 

Optimization problems [46,47], Edge 

detection in noisy images[48,49,50], 

Maximizing production[51], Scheduling 

problems[96] ,Vehicle routing 

problems[52], Artificial Neural 

Network[53,54,55],multi-objective, 

Particles count, 

Dimension of 

particles, Range of 

particles, Learning 

factors:initialweight, 

themax number of 

iterations  
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Combinatorial optimization 

problems,QoS in adhoc multicast[56,57], 

Color image segmentation[58] , 

sequential ordering problem, constrained 

portfolio optimization problem,  

Signature verification[59], Optimization 

in Electric Power Systems[60,61], 

computational finance applications[62], 

convergence analysis and parameter 

selection[37] 

ABC D dimensional vector Recruitment 

of bee, 

searching 

new food 

source. 

Numerical function Optimization[66], 

Optimizing feature selection[65], 

Colormap Quantization[69], feed-

forward neural networks[70], set 

covering problem[71], distribution 

systems[72], real-parameter 

optimization[73], engineering 

design[74], examination timetabling 

problems[75,76], scheduling in grid 

environments[77], optimal power 

flow[78],traveling salesman 

problem[79], image edge 

enhancement[80], load balancing[81] 

The maximum 

number of 

iterations, number 

of food sources, 

employed 

unemployed bee 

count 
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Genetic 

Algorithm 

Binary or real numbers Selection 

Crossover 

Mutation 

protein folding 

simulations[82,83],clustering and image 

segmentation[84],Data mining[85] graph 

and shape matching[86],genetic 

algorithms were used for registration of 

depth images, 2D shape recognition,rigid 

registration of 3-D curves and 

surfaces[87],  

Population, Max 

generations, 

crossover and 

mutation 

probabilities,  

Chromosome 

length, chromosome 

encoding, and 

decoding 

Conclusion 

This paper provides an overview of different nature inspired algorithms. Some of the well known 

algorithms like ACO, PSO, ABC and GA are discussed in detail along with their representation, 

operations and applications. Other well known algorithms are also mentioned. NIC algorithms 

can be used for optimizing a solution of a complex and challenging problems. The scope of this 

field is very vast and there is lot of areas yet to be explored. 
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