Think India Journal
 ISSN: 0971-1260 Vol-22, Special Issue-21
 National Conference on
 A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019

ODD GRACEFUL LABELING

G.Rohith \& S.Gayathri
Assistant Professor
Department of Mathematics
Vel Tech Ranga Sanku Arts College, Avadi,Chennai.

Abstract

: Graph theory studies the properties of various graphs. Graphs can be used to model many situations in the real world .Graph theory has proven to be particularly useful to a large number of rather diverse fields. The main importance of the computer, there has been a significant movement away from the traditional calculus courses and toward courses on discrete mathematics, including graph theory. We begin with simple, finite, connected and undirected graph.

KEYWORDS:

Odd graceful, Labeling, Vertex, Connected graph, Path

1.1 Introduction:

We begin with simple, finite, connected and undirected graph
$G=(V(G), E(G))$ with p vertices and q edges. For standard terminology and notations we follow Harary.

1.2 Definition:

If the vertices are assigned values subject to certain conditions then it is known as graph labeling.

1.3 Definition:

A function f is called graceful labeling of graph G if $\mathrm{f}: \mathrm{V}\{0,1, \ldots \mathrm{q}\}$ is injective and the induced function $\mathrm{f}^{*}: \mathrm{E}\{1,2, \ldots, \mathrm{q}\}$ defined as
$f^{*}(e=u v)=|f(u)-f(v)|$ is bijective. A graph which admits graceful labeling is called a graceful graph.

1.4 Definition:

A graph $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ with p vertices and q edges is said to admit an odd graceful labeling if f $: V(G)\{0,1,2, \ldots 2 q-1\}$ is injective and the induced function $\mathrm{f}^{*}: \mathrm{E}(\mathrm{G})\{1,3,5, \ldots, 2 \mathrm{q}-1\}$ defined as $\mathrm{f}^{*}(\mathrm{e}=\mathrm{uv})=|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})|$ is bijective. A graph which admits graceful labelingis called an odd graceful graph.

1.5 Definition:

Shadow graph $D 2(G)$ of a connected graph G is constructed by taking two copies of G say G 'and $G^{\prime \prime}$, join each vertex u 'in G 'to the neighbors of the corresponding vertex u ' 'in $G^{\prime \prime}$.

Theorem 1.6:

Think India Journal

ISSN: 0971-1260 Vol-22, Special Issue-21

National Conference on

A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019

The graph obtained by fusing all the n vertices of cycle Cnof even order with the apex vertices of n copies of $\mathrm{K} 1, \mathrm{~m}$ admits odd graceful labeling.

Proof:

Let Cnbe a cycle of even order with $v 1, v 2, \ldots, v n$ be its vertices and G be the graph obtained by fusing all the n vertices $v i$ of Cnwith the apex vertices of star $K 1, m$.
Denote the pendant vertices of $K 1, m b y$ vij where $1 \leq i \leq n$ and $1 \leq j \leq m$.
Then G is a graph with $|\mathrm{V}(\mathrm{G})|=\mathrm{n}+\mathrm{nm}$ and $|\mathrm{E}(\mathrm{G})|=\mathrm{n}+\mathrm{nm}$.

To define $f: V(G) \rightarrow\{0,1,2, \ldots .2 q-1\}$. we consider following two cases.

Case 1: $n 0(\bmod 4)$

$$
\begin{gathered}
f(v i)=(m+1)(2 n-i)+1 ; \mathrm{i} \text { is even and for } 1 \leq i \leq \\
=(m+1)(i-1) ; \mathrm{i} \text { is odd and for } 1 \leq i \leq \\
f(v i)=(m+1)(2 n-i)+1 ; \mathrm{i} \text { is even and for } \\
\quad+1 \leq i \leq n \\
=(m+1)(i-3)+2(m+2) ; \mathrm{i} \text { is odd and for }
\end{gathered}
$$

Think India Journal
ISSN: 0971-1260 Vol-22, Special Issue-21
National Conference on
A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019
$+1 \leq i \leq n$
$f(v i j)=(m+1)(2 n-i+1)-2 j+1$; if i is odd $=(m+1)(i-2)+2 j$; if i is even $f(v i j)=(m+1)(2 n-i+1)-2 j+1$; if i is odd and For
$+1 \leq i \leq n ; 1 \leq j \leq m$
$=(m+1)(i-4)+2(m+j+2)$; if i is even and For
$+1 \leq i \leq n ; 1 \leq j \leq m$
Case 2: $n 2(\bmod 4)$

$$
f(v i)=(m+1)(2 n-i)+1 ; i \text { is even and for } 1 \leq i \leq
$$ $+1$

$=(m+1)(i-1) ; \mathrm{i}$ is odd and for $1 \leq i \leq$
$+1$
$f(v i)=(m+1)(2 n-i)+1 ; \mathrm{i}$ is even and for $+1 \leq i \leq n-1$
$=(m+1)(i-3)+2(m+2) ; i$ is odd and for
$+1 \leq \mathrm{i} \leq \mathrm{n}-1$
$f(v n)=(m+1)(2 n-i)-1$
$f(v i j)=(m+1)(2 n-i+1)-2 j+1$; if i is odd and for $1 \leq i \leq$
$; 1 \leq j \leq m$
$=(m+1)(i-2)+2 j$; if i is even and for $1 \leq i \leq$
$; 1 \leq j \leq m$
$f(v i j)=(m+1)(2 n-i+1)-2 j+1$; if i is odd and for
$+1 \leq i \leq n-1 ; 1 \leq j \leq m$
$=(m+1)(i-2)+2(j+1) ;$ if , i is even and for
$+1 \leq i \leq n-1 ; 1 \leq j \leq m$
$f(v n j)=(m+1)(n-2)+2(j+1)$; for $1 \leq j \leq m-1$ $=(m+1)(n-2)+2(2 j+1) ;$ for $j=m$
The above defined function f exhausts all the possibilities and the graph under consideration is an odd graceful graph.

Illustration 1.7

The following Figure 1.6 shows the labeling pattern of the graph obtained by fusing each vertex of $C 8$ with the apex vertices of eight copies of star $K 1,3$.

Figure 1.6: Apex vertices of eight copies of star K1,3

Theorem 1.8:

The graph $\mathrm{D} 2(\mathrm{Pn})$ is an odd graceful graph.
Proof:

Think India Journal

ISSN: 0971-1260 Vol-22, Special Issue-21
National Conference on
A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019

Let G be $D 2(P n)$ then $|\mathrm{V}(\mathrm{G})|=2 \mathrm{n}$ and $|E(G)|=4(n-1)$ and
Let $v 1, v 2, \ldots, v n$ be the vertices of first copy of path Pn and $v^{\prime} 1, v^{\prime} 2, \ldots, v^{\prime} n$ be the vertices of the second copy of path Pn.
Define $f: V(G) \square\{0,1,2, \ldots, 2 q-1\}$ as follows.
$f(v i)=4(i-1)$; iis odd
$=4(2 n-i)-1 ; i$ is even
$f\left(v^{\prime} i\right)=4(i-1)+2$; iis odd

$$
=4(2 n-i)-5 ; \text { is even }
$$

The above defined function f provides graceful labeling for $D 2(P n)$.

Theorem 1.9:

The graph $\mathrm{D} 2(\mathrm{~K} 1, \mathrm{n})$ is an odd graceful graph.

Proof:

Let G be $D 2(K 1, n)$ and $v, v 1, v 2, \ldots, v n b e$ the vertices of first copy of star $K 1, n$
And $v^{\prime}, v^{\prime} l, v$ ' $2, \ldots, v^{\prime} n$ be the vertices of the second copy of star $K 1, n$.
Define $f: V(G) \rightarrow\{0,1,2, \ldots(2 q-1)\}$
as follows.
$f(v)=0$
$f(v i)=8 n-4 i+3$; for $1 \leq i \leq n$
$f\left(v^{\prime}\right)=2$
$f\left(v^{\prime} i\right)=4 i-1 ;$ for $1 \leq i \leq n$
In view of above defined labeling pattern G admits odd graceful labeling.

Theorem:1.10

$S^{\prime}\left(B_{n, n}\right)$ is an Odd graceful graph.
Proof:
Consider $B_{n, n}$ with the vertex set $\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}: 1 \leq \mathrm{i} \leq n\right\}$, where u_{i}, v_{i} are the pendant vertices.
In order to obtain $\mathrm{G}=S^{\prime}\left(B_{n, n}\right)$, add $\mathrm{u}^{\prime}, \mathrm{v}^{\prime}, u_{i}{ }^{\prime}, v_{i}{ }^{\prime}$ vertices corresponding to u, v, u_{i}, v_{i};
Where, $\quad 1 \leq \mathrm{i} \leq n$, If $\mathrm{G}=S^{\prime}\left(B_{n, n}\right)$ then $|V(G)|=4(\mathrm{n}+1)$ and $|\mathrm{E}(\mathrm{G})|=3(2 \mathrm{n}+1)$. We define the vertex
Labeling $f: V(G) \rightarrow\{0,1,2, \ldots(12 \mathrm{n}+5)\}$
we consider the following two cases.
$f(u)=0$,
$f(v)=3$,
$f\left(u^{\prime}\right)=2$,
$f\left(v^{\prime}\right)=5$,
$f\left(u^{\prime} i\right)=5+4 i ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(u^{\prime} i\right)=12 n+7-2 i ; 1 \leq \mathrm{i} \leq \mathrm{n}$
$f\left(v^{\prime} l\right)=f\left(u^{\prime} n\right)+1$,

Think India Journal
 ISSN: 0971-1260 Vol-22, Special Issue-21
 National Conference on
 A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019

```
f(v'l+i)=f(v'l) - 2i;1\leqi\leq n - 1
f(v1) = f(v'n) - 2,
f(vl+i)=f(vl)-4i;1\leqi < n - 1
```

The vertex function f defined above induces a bijective edge function
$f^{*}: E(G) \rightarrow\{1,3,5, \ldots(12 \mathrm{n}+5)\}$
Thus f is an odd graceful labeling of $\mathrm{G}=S^{\prime}\left(B_{n, n}\right)$.
Hence $S^{\prime}\left(B_{n, n}\right)$ is an odd graceful graph.

Illustration 1.11: Odd graceful labeling of the graph $S^{\prime}(B 6,6)$ is shown in Figure 1.10. Figure

The vertices are assigned values subject to certain conditions then it is Known as graph labeling. The graph obtained by fusing all the n vertices of cycle n copies of $\mathrm{K} 1, \mathrm{~m}$ admits odd graceful labeling. $\mathrm{D} 2(\mathrm{~K} 1, \mathrm{n}), S^{\prime}\left(B_{n, n}\right)$ and $\mathrm{D} 2(\mathrm{Pn})$ are Odd graceful graph

BIBLIOGRAPHY

1) Acharya.B.D, and Gill.M.K, on the intex of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs.

Think India Journal
ISSN: 0971-1260 Vol-22, Special Issue-21
National Conference on
A Modern Approach to Designing Implementation and Reinforcement of Quality Management

System Organised by
ZES's, Zeal Institute of Management and Computer Application, Narhe, Pune, Maharashtra, India
on 21st November 2019
2) Acharya.B.D, construction of certain infinite families of graceful graph from a given graceful graph, Def, sci,. 32(3) (1982), 231-236.
3) Balaganesan.P, Selvaraju.P, Renuga.J, on vertex graceful labeling, Bulletin of vertex graceful labeling, Bulletin of kerala mathematics association,Vol.9(June 2012)179-184.
4) Beinke.L.W and Hegde, S.M. Strongly multiplicative graphs, Discuss.Math.Graph Theory, 21(2001), 63-75.
5) Bosak.J, cyclic decompositios, vertex labelings and graceful graphs, decompositios of graphs, kluwar academicPublishers,1950, 57-76.
6) Bloom. G.S, Golomb. S. W., Applications of numbered undirected graphs, Proceeding of IEEE,65(4)(1977), 562-570.
7) Frucht.R, and Gallian.J.A, labeling, prisms, ars combinatoriacs,26(1988).
8) Gallian.J.A, A dynamic survey of graph labeling, The electronic journal of combinatorics, a. 16 (2009), \#DS6.

