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Abstract 

A grain is a crystal within the polycrystal, which usually does not have a regular shape; 

and, a grain boundary is a zone of transition between different crystalline orientations of the 

adjacent grains. Here we discuss the diffuse-interface description for movement of grain 

boundaries and assurity of the diffuse interface field model in explaining curvature driven micro-

structural evolutions. In this study, we only consider two dimensional systems with isotropic 

grain boundary energy. Specifically, we report results from our studies on two grains of circular 

geometries in 2-D and the effect of various simulation parameters on the results. There are a 

variety of computer simulation methods to study grain growth; for example, models such as 

boundary dynamics model, vertex models, Potts model, Voronoi tessellation and models based 

on mean field theories (see Ref. 9). In this report, we use diffuse-interface models of the type 

proposed by Chen and co workers (see Ref. 9-11). In this section we summarise the salient 

features of as well as some of the pertinent results from the diffuse interface models. 

 

1. Introduction 

A grain is a crystal within the polycrystal, which usually does not have a regular shape; 

and, a grain boundary is a zone of transition between different crystalline orientations of the 

adjacent grains. 

Grain boundaries are regions of disorder. This disorder results in an increase in the 

internal energy due to the broken, unsatisfied or unequilibrated bonds at the grain boundaries. 

However the increase in the entropy associated with the disorder at the grain boundary is not 

large. Hence, as compared to a single crystal, a polycrystal with grain boundaries has a higher 

(positive excess) free energy. So, grain limit movement happens in polycrystalline materials to 
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decrease the all out grain limit region and the abundance free vitality related with them; this 

procedure is alluded to as grain development 

In polycrystalline materials the microstructure, i.e, the sizes, shapes and strategy of 

grains, essentially chooses the mechanical properties; for instance, using an equation like Hall–

Petch, it can be shown that the yield stress is inversely proportional to the grain size. So, as the 

grains become smaller and smaller, the material becomes more and more strong. Hence grain 

growth can lead to changes in the properties of the materials and is an important area of study 

both from an industrial and fundamental points of view. 

Some salient analytical results 

According to Neumann and Mullins (Ref. 2-3), in 2-dimensions, the individual grain area 

change with respect to time doesn't rely upon the size or geometrical state of the grain, however 

depends just on its number of sides. This condition is applicable at the points where three grains 

meet the boundaries make an angle of 120o : 

                                                   ( 6)
3

da m
n

dt


  ,                                                     (1.1) 

where  a   and   n   are   the   area   and   the number of sides of grains, γ and m are the energy of 

the grain boundaries and mobility. 

   Grains grow when n > 6; that is, when the number of sides of grain are greater than six. 

   Grains contract when n < 6; that is, when the number of sides are less than six. 

   Grains neither grow nor contract if n = 6; that is, when the number of sides are six.  

The above result of Neumann and Mullins can also be understood if we consider the 

grain growth as a curvature driven process. If a grain boundary is curved, the atoms on 

the concave side have lower potential than those on the convex side. That is, the atoms 

are less tightly bound by neighbouring atoms on the convex surface. Thus, if the system 

is kept at a high enough temperature which gives enough mobility, thermal movements 

will gradually transfer the atoms from the grain with a more convex surface to a grain 

with a more concave surface. Since little grains will in general have surfaces with more 
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keen convexity, they will progressively vanish by nourishing the bigger grains. The net 

impact is grain development. 

 

 In interface motion theories, the grain boundary motion in term of speed V given by 

                                     ,V B u   

                                    1 2( ),gbV B                                                                (1.2) 

                            where,            u   =     Chemical potential difference per atom across the                           

                                                           boundary. 

                                                =    Atomic volume 

                                           B     =     Mobility  

                                  1 2      =     Mean curvature  

                                        gb     =     Grain boundary energy    

Diffuse interface modeling of normal grain growth  

Both experimentally and from simulations, it is known that grain growth can in general 

be classified as of two types: normal and abnormal grain growth; see for example (Ref. 4). As 

shown schematically in Fig. 1.1 and 1.2 below, under normal growth of grain, the size of grains 

increases slowly, and the grain size distribution is unimodal. During abnormal grain growth the 

mean grain size changes first a little, if at all, and thereby increase rapidly; the initial stage of 

very little or no growth is known as incubation period. In this report, we only study normal grain 

growth. 

There are many different types of models of grain growth. These can broadly be 

classified as atomistic and continuum models. Continuum models may again be broadly 

classified as sharp and diffuse interface models. In the sharp-interface models the grain limits are 
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unique geometrical surfaces having properties, for example, region, bend, free energy, and 

portability. Such models are reviewed in (Ref. 5-7).  

 

   

Fig.1.1 Normal grain growth 

 

Fig.1.2 Abnormal grain growth 

 In diffuse interface model the main feature is diffuse of grain boundaries with limited thickness. 

This is like the hypothetical treatments of anti-phase space limits by Allen and Cahn (see Ref. 8). 
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The grain limit vitality is naturally presented through the inclination vitality. As fundamental 

preferences approach is that a self-assertive microstructure can be often treated as the inter-faces 

are not solitary surfaces requiring inconvenience of moving limit conditions as in the sharp-

interface depiction, however only a district where the fields have high slopes (see Ref. 9). 

2. Theoretical Formulation and Numerical Implementation 

In the diffuse interface model, a polycrystalline microstructure is described by as many 

orientation field variables as there are distinct grains (see Fig. 2.1 below where we schematically 

show the description of a system with seven grains); these field variables distinguish the different 

orientations of the grains and are continuous functions of spatial position and time. For every 

grain, the corresponding orientation field variable has a constant value of unity inside the grain 

but changes to zero outside the grain over the thickness of the grain boundary. The worldly 

development of these field factors, and hence the microstructural advancement and grain 

development energy are described by the time-dependent Ginzburg- Landau (TDGL) equations.  

2.1 The diffuse-interface model 

 

Let us consider an polycrystalline microstructure  as a set of orientation field variables,  

                                       
1 2( ), ( ),..., ( )pr r r   ,                                                                                                            

where p is the number of possible orientations. The total free energy of such a system in terms of 

all the orientation field variables and their gradients can be written as: 

   

                        
2 3

1 2

1

[ ( ( ), ( ),..., ( )) ( ( )) ]
2

p

i
o p i

i

k
F f r r r r d r   



                               (2.1) 

    

where i=1, 2,…,p,  and 0f ( free local energy density as a component of field variables i ), and  

ik   ( gradient energy coefficients). 
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Fig.2.1.Diagram of  microstructure showing 7 grains using 7 orientation field variables 

 

In present study, to begin with, we consider the two grain case of one grain embedded in 

another; hence, there are two continuous field variables 1  and 2 , corresponding to the two 

orientations. In such a case, the free total energy of the inhomogeneous system as a function of 

the two orientation field variables and their gradients is: 

                       
2

2 3

1 2

1

[ ( ( ), ( )) ( ( )) ]
2

i
o i

i

k
F f r r r d r  



   .                                          (2.2) 

 The main requirement for 0f  is that it has two (since p=2) degenerate minima with 

equal depth, minf  located at ( 1 , 2 ) = (1, 0), and (0, 1) in the 2- dimensional space.                                                              

 



THINK INDIA JOURNAL                                                               ISSN: 0971-1260 

                                                                                                                                                                                     Vol-22-Issue-17-September-2019 

 

P a g e  | 1194  Copyright ⓒ 2019Authors 

                              Since the direction field factors are non-rationed amounts, their neighborhood 

development rates are straightly relative to the variational subsidiary of the all out free vitality as 

for the nearby direction field variable, i.e. governed by the Ginzburg - Landau equations, 

 

                          
( , )

,
( , )

i
i

i

r t F
L

t r t

 




 


           i=1, 2,…,p                                          (2.3) 

 

where iL  is Relaxation coefficients, t is time and F is Free total energy ). For the two grain case 

we have two equations: 

 

                         1
1

1

( , )

( , )

r t F
L

t r t





 
 

 
 

                        
2

2

2

(,)

(,)

rt F
L

t rt




 


         

 

If we substitute for the free energy expression in the above equations, we obtain the equations for 

the evolution.  

 

Thus, for our case, the evolution of the orientational order parameter fields   are described by, 

 

                        2 2 31 1 2
1 0 1 2 1 2

1

( , )
[ [ ( , ) ( ) ( ) ]]

( , ) 2 2

r t k k
L f d r

t r t


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

 
     
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 , 
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  Putting               2 2 4 4 2 2

0 1 2 1 2 1 2 1 2( , ) ( ) ( ) 2 ( )
2 4

f
 

              ,                     (2.4) 

  

where  ,   and   are positive constants 

 

 we obtain,               
3 2 21

1 1 1 12 11[ 4 ]L k
t

 
 


 

          
3 2 22

2 2 2 21 22[ 4 ]L k
t

 



 .                     

  

Initial and boundary conditions:            

In our model calculations, when we embed a grain inside another, for the initial profile (that is, 

profile at t=0) of the continuous field variables 1  and 2 , we assume the following: 1  is unity 

in the embedded grain (while 2  is 0) while it is the other way around for the other grain.  

1( , 0) 1x t    and  2 ( , 0) 0x t    only inside the embedded grain.  

On the outside of the embedded grain 1( , 0) 0x t    and 2 ( , 0) 1x t   . We use periodic 

boundary conditions on the simulation domain which is the natural boundary condition to use 

since our numerical implementation is based on Fourier transforms as described below. 

2.2 Numerical implementation 

We use a semi-implicit Fourier spectral technique to solve the equations of microstructural 

evolution. To do so, we first (spatially) Fourier transform the evolution equations, and use a 

forward difference scheme for the time evolution. 
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                                 1 1 1
t t t

t t

   


 
,                                                                       (2.5) 
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
   


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
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 Similarly, 

                               
2 3 22

2 2 2 2 2 2 2 2 2 14L k L L L
t


    


    


. 

         Taking                 3 2
1 1 2 1 1 1 1 2( , ) 4h L L      ,          and, 

                                  3 2
2 1 2 2 2 2 2 1( , ) 4h L L        

we obtain, 
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where,                  
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Finally, we get                        
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Coding 

The following results are obtained using a C code which is a modified version of a code of M. P. 

Gururajan, which is available online (see Ref. 13). I have downloaded this code, which is meant 

for solving the Allen-Cahn equations for order-disorder transformations (using the freeware 

fastest fourier transform to the west of pacific-- FFTW).We modified it to do grain growth 

simulations for one grain inside the another. This modification involves, changing the initial 

conditions in this program, modifying the formulation with increased numbers of parameters 

(two instead of one), and, doing the calculations for two orientation field variables instead of 

one. 

 Simulation parameters 

In all our simulations we use the following values for the various parameters (unless specified 

otherwise).  

                                                          Table 2.1  Simulation parameters 

Case :                             _ _n x n y           

                                          x y    

                                            

          256 

            1 

            1 

       512 

       0.5 

         1 

     1024 

      0.25 

         1 
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A.Circular 

                1 2k k  

               1 2L L     

            1 

            1 

            

             

            

            

 

 

3. Results and discussions 

 In this report, we discuss the time evolution of circular grain boundary in different  

embedded grains: 

 

3.1 Microstructures 

  

In Fig. 3.1 (a-d), we show the evolution of microstructural for a grain with circular boundaries 

embedded in another; while the circular ones move in such a way that as time proceeds the 

embedded grains decrease in area; finally, they will disappear leaving behind a single grain. This 

trend is in agreement with what we expect from the curvature driven growth. Further, the 

differences in time for the complete disappearance of the embedded grains in the circular cases is 

a reflection of the differences in the mean curvature at various points on the boundary in these 

cases; while the curvature is the same at all points on the circular boundary. Finally, while the 

circular grain remains circular at all times. This is also expected because we have assumed 

isotropic grain boundary energy and hence for a given area a circular shape minimizes the grain 

boundary length. 

 

Fig.3.1.Microstructural evolution for a grain with circular boundaries embedded in another. 
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       Fig. (a) Circular grain inside another at t=0, 

 

 

       Fig. (b) At t=5000,      
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       Fig. (c) At t=10000,      

 

       Fig. (d) At t=12000,      

3.2 Positions and Velocities of boundaries 

In Fig. 3.2(i), we show the profile of the request parameter from the centre of the 

simulation cell to the end of the simulation cell boundary (to the right) at various times. 
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Fig.3.2(i) Graph of order parameter versus position at different times. 
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R 
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Fig.3.2(ii) The profile of the interface at t=7000 for a circular embedded grain.                                                          

 

                                                                                         

                     Fig.3.3(iii) Graph of interface position (R) versus time (t) for a circular grain. 

 

 

 

From these profiles of the orientation order parameter at different times, we can determine the 

radius of the shrinking circular grain as a function of time. Let us, for example, consider the 

profile of the orientational order parameter at time t=7000. This profile is shown in Fig.3.2(ii). 

From this profile, we identify two points – one above 0.5 and another below 0.5. Knowing the 

values of the grid position for these two points and the values of the order parameter at these two 

grid positions, one can calculate the exact point of the grid at which the order parameter profile 

takes a value of 0.5. For example, in the figure shown above, we have taken the grid point 42 and 

44; for these two points, the values of the order parameter, read from the data files are 0.6835766 

  

 

 

 

  R 

t 
t 
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and 0.4215244 respectively. Now, knowing two points, say, 1 1( , )x y  and 2 2( , )x y , a straight line 

can be fit using the following expression; 

                                              2 1
1 1

2 1

( )
x x

x y y x
y y


  


. 

In other words, we use a straight line interpolation to identify the interface position, which is 

arbitrarily taken to be the point at which the order parameter takes a value of 0.5. Doing such an 

analysis on the order parameter profiles and identifying the interface position at each time, we 

obtain the plot the circular grain radius as a component of time, check in Fig. 3.3(iii).  

Once we have the position as a component of time it is rather straight forward to calculate 

the velocity of the boundary. Further, in the case of the circular boundary we can also calculate 

the mean curvature corresponding to the velocity by averaging the reciprocal of the radii at the 

two times which were used to calculate the velocity. That is we calculate the interface velocity 

(dR/dt) and the mean curvature (1/R), and we show the plot of curvature versus velocity in 

Fig.3.8. Note that the plot is a straight line barring some deviations at the early stages of the 

simulation where a diffuse interface is being formed. Thus our numerical results are in agreement 

with the analytical expression given in the introduction, namely, 
1

V
R

  

            

 

             Fig.3.8 Graph of velocity (V) versus curvature (2 / (Ri + Rj)) for circular. 

 V 
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              Fig.3.9 Interface profile for determining the width of the interface. 

 

3.3 Widths and Energies of the boundaries 

In Table 3.1 we show the effect of grid refinement as well as gradient energy coefficient on the 

interface widths. In this case we consider the flat grain boundary to avoid any errors due to the 

grain boundary movement. After the boundary becomes diffuse, say after 15000 time steps, we 

consider the interface profile (see Fig. 3.9). From this profile, we identify two points – one above 

0.5 and another below 0.5. Knowing the values of the grid position for these two points and the 

values of the order parameter at these two grid positions, one can calculate the exact point of the 

grid at which the order parameter profile takes a value of 0.99 and 0.01. For example, in the 

figure shown above, we have taken the grid point 65 and 67; for these two points, the value of 

the order parameter, read from the data files are 0.3655870 and 0.7290936 respectively. Now, 

knowing two points, say, 1 1( , )x y  and 2 2( , )x y , a straight line can be fit; or, in other words, we 

use a straight line interpolation to identify the interface position, put y = 0.99, we get x = 

68.43549746. Also put y = 0.01, we get x = 63.04357335. The difference between these two 

values gives the width of the interface.  
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In Table 3.1, we show the calculated interface widths for three pairs of gradient energy 

coefficients (see the columns 3-5). It is well known that in this models the interface width scales 

as the square root of the gradient energy coefficient (see Ref. 14 for example). In Table 3.2 we 

give the scaled widths (
0.5

w

k
) for the different simulations. From these values it is clear that the 

numerical simulations (a) are not well resolved for 1k = 2k =1; (b) the finer discretization of the 

grids leads to better values. Further from these values it is also clear that for 1k = 2k =4 and 

1k = 2k =8, even a coarse grid gives reliable widths.  

 

Table 3.1 

  Calculation of the grain boundary width with different value of gradient energy coefficients. 

 

Total Grid Size;  n_x  =  n_y 

Grid Spacing: x   =  y  

Relaxation Coefficients- iL  

G
ra

d
ie

n
t 

En
er

gy
 C

o
ef

fi
ci

en
ts

 i
k

 

 

 

256  

  x = y =1 

    1L  = 2L =1  

              

 

512 

x = y =0.5 

1L = 2L =1   

            

 

1024 

x = y =0.25 

1L = 2L =1  

            

 

 

 

 

 

 

1K = 2K =1 

 

 

 

3.193146075 

 

5.3919256 

 

11.67026495 

 

5.39192411 

 

10.24001336 

 

20.99285939 
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                      Width 

 

  

                       

1K = 2K =4 

 

 

1K = 2K =8 

 

 7.36703627 

 

  14.96650479 

 

 

   29.370556 

 

                                                              Table 3.2 

 

                                             Scaled grain boundary widths 

 

 

Total Grid Size: n_x = n_y 

Grid Spacing: x  = y  

Relaxation Coefficients- iL  

G
ra

d
ie

n
t 

En
er

gy
 C

o
ef

fi
ci

en
ts

 i
k

 

 

 

256  

  x = y =1 

    1L  = 2L =1  

              

 

512 

x = y =0.5 

1L = 2L =1   

            

 

        1024 

x = y =0.25 

1L = 2L =1  

            

 

 

 

 

 

 

1K = 2K =1 

 

 

 

3.19 

 

5.39 

 

11.67 

 

2.69 

 

5.12 

 

10.44 
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    Scaled width 

                 

 

  

                       

1K = 2K =4 

 

 

1K = 2K =8 

 

       2.60 

 

        5.29 

 

 

        10.38 

 

The grain limit vitality starts from the slope vitality terms 2( )i  which are not zero only in  

region of the grain boundaries and the local free energy density which has higher values 

compared to the interior regions of the grain. According to Cahn and Hilliard (see Ref. 15 for 

example), the energy 
gb  of flat grain-boundary among orientation i & j (i ≠ j) described as: 

       

                            2 2
0 min

[ ( , ) ( ) ( ) ]
2 2

j ji i
i jgb

k dk d
f f dx

dx dx


  




    ,      

 

Where minf  is the local free energy density in the interior regions of the grain. Note that the 

grain-boundary energy, thus, is nothing but the extra free energy of  in-homogeneous systems 

than a homogeneous system with an equilibrium value of either i  or 
j . For a given of , the 

boundary energy and thickness vary with ik  and 
jk . The smaller the ik  and 

jk , thinner is the 

boundary region, and smaller is boundaries between different grains.  

 

4. Conclusions 

1. We have implemented a Fourier spectral code in C to do diffuse interface simulations of 

2-D grain growth. 
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2. Our numerical simulations are in adequate responses along with some of available 

analytical results; for example, the growth is curvature driven and the velocity of the 

boundary is proportional to the curvature. 
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