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Abstract—This paper presents a backstepping based step by 

step controller designer procedure for a fractional order chaotic 

system (FOCS) with uncertain parameters, which is in strict 

feedback form. On the basis of backstepping control, a control 

strategy for stabilization of fractional order Lorenz system with 

unknown parameters, is proposed. Adaptive backstepping 

control has been used to obtain the parameter update laws for 

Lorenz system with unknown parameters. The controller is 

obtained such that the singularity problem is avoided, 

simultaneously, getting the update laws for the parameters. 

Simulation results are presented to prove the effectiveness of 
thecontroller. 

Keywords—fractional order; backstepping; uncertainty; Lorenz 

system 

I.  INTRODUCTION  

Chaos that is considered one among the necessary 
properties of nonlinear systems, finds varied applications in 
engineering and science. A lot of researchers have focused on 
chaos control [1], [2], and further towards chaos 
synchronization [3]–[5]. Fractional calculus can assist in 
obtaining the mathematical representation of a system, more 
accuratelyas compared to the traditionalmodelling methods, 
which leads to better analysis and control[6], [7]. FOCShave 
become one of the important fileds of research. 

Fractional order variants of different integer-order chaotic 
systems have  been studied and analyzed e.g.,Lorenz system 
[8], Chen system [9], [10],Rӧssler‟s system [11]. Vrious 
techniques have been put forward for synchronizationof 
FOCS[12]–[17]. Backstepping technique is one of the 
prevalent controller design method put forward byKristic et. al. 
[18]. It has been used by severalscholars for control and 
synchronization of numerous systems.Backstepping procedure 
is based on Lyapunov theory and involves step-wisetechnique 
for controller strategy. It also warrantsasymptotic stabilityin 
global sense.  

Various researchers have put forward different methods for 
stabilization of systems with unfamiliar parameters [29-31]. In 
this paper, we propose a stabilizing controller for the fractional 
order (FO) Lorenz system with unknown parameters. Here, in 
this manuscript, controller is designed on the basis of adaptive 

backstepping method, for uncertain FO Lorenz system which 
itself is based on FO extension of Lyapunov stability 
theory.Also, different techniques have been utilized for 
regulation of theconcerned system, but backstepping method 
has not been applied to address this problem. Traditional 
backstepping if applied results into singularity problem which 
further leads to system instability. Here in this work, the 
controller isobtained by utilizingadaptive backstepping strategy 
which results into adaptation laws for uncertain parameters, 
which further avoids the singularity problem. 

The manuscript is systematizedas:Fractional calculus is 
discussed in Section II. System description and its behavior is 
discussed in section III. Design of stabilizing controllers for FO 
Lorenz systems is described in section IV. The outcomes 
obtained after simulationare given in section V. Section VI 
concludes the work. 

II. FUNDAMENTALS OF FRACTIONAL CALCULUS 

The elementarydescription of fractional calculus through 

operator 𝐷𝑎 𝑡
𝑞
 is expressed as, 

𝐷𝑎 𝑡
𝑞

=  

𝑑𝑞

𝑑𝑡𝑞
𝑞 > 0

1 𝑞 = 0

  𝑑𝜏 −𝑞
𝑡

𝑎
𝑞 < 0

              (1) 

Here, a and t are the limitsof integration and q is a real 
number. 

Theimperativedefinitions which describeFO differentiation 
or integral are:Grunwald-Letnikov,Riemann-Liouville (RL), 
and definition given by Caputo.  

A. Grunwald-Letnikov 

𝐷𝑎
𝐺𝐿

𝑡
𝑞
𝑓 𝑡 = 𝑙𝑖𝑚

𝑕⟶0

1

𝑕𝑞
  −1 𝑗  

𝑞

𝑗
 𝑓(𝑡 − 𝑗𝑕)

∞

𝑗=0

 

 (2) 

B. Riemann-Liouville 

ℐ𝑞𝑓(𝑡) ≜
1

𝛤(𝑞)
  𝑡 − 𝜏 𝑞−1𝑓 𝜏 𝑑𝜏
𝑡

0
 (3) 
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𝐷𝑎
𝑅𝐿

𝑡
𝑞
𝑓 𝑡 =

1

𝛤(𝑚 − 𝑞)

𝑑𝑚

𝑑𝑡𝑚
 

𝑓(𝜏)

 𝑡 − 𝜏 𝑞−𝑚+1
𝑑𝜏

𝑡

𝑎

 

 where, 𝛤 𝑚 =  𝑚 − 1 ! ,  𝑡 > 0,  𝑞 ∈ ℝ+𝑚− 1 < 𝑞 < 𝑚 

C. Caputo  

𝐷𝑎
𝐶

𝑡
𝑞
𝑓 𝑡 =

1

𝛤(𝑚−𝑞)
 

𝑓𝑚 (𝜏)

 𝑡−𝜏 𝑞−𝑚+1 𝑓 𝜏 𝑑𝜏
𝑡

0
  (4) 

 

The numerical approximations of thederivative of order qon 
points 𝑘𝑕 (𝑘 = 1, 2, … ) is written as: 

𝐷𝑘−𝐿𝑚 𝑕 𝑘𝑕
𝑞
𝑓 𝑡 = 𝑕−𝑞  𝑐𝑗

(𝑞)
𝑓 𝑡𝑘−𝑗  

𝑘
𝑗=0   (5) 

with, 𝐿𝑚  = „memory length, h = time step. 𝑐𝑗
(𝑞)

(𝑗 = 0,1, … , 𝑘) 

are coefficients expressed as:  
  

𝑐0
(𝑞)

= 1 

 

𝑐𝑗
(𝑞)

=  1 −
1+𝑞

𝑗
 𝑐𝑗−1

(𝑞)
  (6) 

The final solution of nonlinear FODE expressed 

as, 𝐷𝑎 𝑡
𝑞
𝑦 𝑡 = 𝑓(𝑦 𝑡 , 𝑡), is given as:  

𝑦 𝑡𝑘 = 𝑓 𝑦 𝑡𝑘 , 𝑡𝑘 𝑕
𝑞 − 𝑐𝑗

 𝑞 𝑘
𝑗=1 𝑦(𝑡𝑘−𝑗 ) (7) 

 

III. SYSTEM DESCRIPTION AND STABILITY ANALYSIS 

The Lorenz system represents a set of ordinary differential 
equations and was first studied by Edward Lorenz in 1963. It is 
considered as one of the benchmark systems by research 
community, in the area of nonlinear dynamics. The integer 
order Lorenz system is expressed as: 

𝑥 1(𝑡) = 𝜃1𝑥2(𝑡) − 𝜃1𝑥1(𝑡) 

𝑥 2(𝑡) = −𝑥1(𝑡)𝑥3(𝑡) + 𝜃2𝑥1(𝑡) − 𝑥2(𝑡) (8) 

𝑥 3(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) − 𝜃3𝑥3(𝑡) + 𝑢 

The state model of FOversion of Lorenz system iswritten as: 

𝐷𝑡
𝑞1𝑥1 𝑡 = 𝜃1𝑥2(𝑡) − 𝜃1𝑥1(𝑡) 

𝐷𝑡
𝑞2𝑥2 𝑡 = −𝑥1(𝑡)𝑥3(𝑡) + 𝜃2𝑥1(𝑡) − 𝑥2(𝑡)(9) 

𝐷𝑡
𝑞3𝑥3 𝑡 = 𝑥1(𝑡)𝑥2(𝑡) − 𝜃3𝑥3(𝑡) + 𝑢 

where, 𝜃1 , 𝜃2 and 𝜃3 are parameters of the system and are 
unknown and 𝑞1 , 𝑞2 and 𝑞3 are orders of derivative. The 
controller 𝑢 is to be designed to establish the stability of the 
system and for estimation of uncertain parameters.  

 The existence of chaosin the system (9) is establishedby 
phase portraits given in Figures 1and 2. The initial conditions 
and the parameters are taken as: (𝜃_1 = 10, 𝜃_2 = 28, 𝜃_3 =
8/3)and (𝑥1 0 = 0.1, 𝑥2 0 = 0.1, 𝑥3 0 = 0.1), 

respectively. Thederivative orders are taken as 𝑞1 = 𝑞2 = 𝑞3 =
0.995. 

 

(a) 

 

(b) 

Fig.1: Chaotic behavior of FO Lorenz system (a) for states 𝑥1 and 𝑥2.  
    (b) for states 𝑥1, 𝑥2 and 𝑥3. 

 

IV. STABILIZATION USING BACKSTEPPING CONTROL 

As the backstepping control is based on Lyapunov stability 
criterion, we use the extension of Lyapunov stability [19], [20]. 
To apply adaptive backstepping control technique we need to 
transform the controlled Lorenz system (9) into the general 
parametric strict-feedback form with 𝑛 = 3. 

𝐷𝑡
𝑞
𝑥1 𝑡 = 𝑔1(𝑥1 , 𝑡)𝑥2 + 𝜃𝑇𝐹1 𝑥1 , 𝑡 + 𝑓1 𝑥1 , 𝑡  

𝐷𝑡
𝑞
𝑥2 𝑡 = 𝑔2(𝑥1 , 𝑥2 , 𝑡)𝑥3 + 𝜃𝑇𝐹2 𝑥1 , 𝑥2 , 𝑡 + 𝑓2 𝑥1 , 𝑥2 , 𝑡  

    ⋮   (10) 

𝐷𝑡
𝑞
𝑥𝑛−1 𝑡 = 𝑔𝑛−1 𝑥1 , 𝑥2 , … 𝑥𝑛−1 , 𝑡 𝑥𝑛

+                           𝜃𝑇𝐹𝑛−1 𝑥1 , … , 𝑥𝑛−1 
+ 𝑓𝑛−1 𝑥1 , … , 𝑥𝑛−1  

𝐷𝑡
𝑞
𝑥𝑛  𝑡 = 𝑔𝑛 𝑥1 , 𝑥2 , … 𝑥𝑛 , 𝑡 𝑢 + 𝜃𝑇𝐹𝑛  𝑥1, … , 𝑥𝑛 

+                        𝑓𝑛  𝑥1, … , 𝑥𝑛   
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where, 𝜃 ∈ 𝑅𝑝  is theunknown constant parameters 
vector.The strategy for designing stabilizing controller is given 
below. 

For the system (9), assuming 𝑞1 = 𝑞2 = 𝑞3 = 𝑞, let  𝑧1 = 𝑥1 

and 𝑧2 = 𝑥2 − 𝛼1. It gives,  

𝐷𝑞𝑧1 = 𝐷𝑞𝑥1 = 𝜃1𝑥2 − 𝜃1𝑥1 

  = 𝜃1𝑧2 + 𝜃1𝛼1 − 𝜃1𝑥1(11) 

Lyapunov function for (11) is,  𝑉1 =
1

2
𝑧1

2 

⇒ 𝐷𝑞𝑉1 ≤ 𝑧1𝐷
𝑞𝑧1 

≤ 𝑧1(𝜃1𝑥2 − 𝜃1𝑥1)                         

  ≤ 𝑧1𝜃1𝑧2 + 𝑧1𝜃1(𝛼1 − 𝑥1)  

the virtual controller can be chosen as: 

𝛼1 = −𝑐0𝑧1  (12) 

𝑉1, is changedto   

⇒ 𝐷𝑞𝑉1 = −𝑐1𝑧1
2 + 𝜃1𝑧1𝑧2,𝑐1 = 𝑐0𝜃1 + 𝜃1 > 0 

 

Similarly, for 𝑧3 = 𝑥3 − 𝛼2the derivative of 𝑧2is expressed as 

𝐷𝑞𝑧2 = −𝑥1𝑧3 − 𝑥1𝛼2 + 𝜃 2𝑥1 − 𝑐0𝜃 1𝑥1 −  1 − 𝑐0𝜃 1 𝛼1 −

              1 − 𝑐0𝜃1 𝑧2 −  𝜃 2 − 𝜃2 𝑥1 + 𝑐0 𝜃 1 − 𝜃1 𝑥1 −

                   𝑐0 𝜃 1 − 𝜃1 𝛼1  (13) 

The new Lyapunov function for (11) and (13) is:  

   

𝑉2 = 𝑉1 +
1

2
𝑧2

2 +
1

2
𝛾−1 𝜃 1 − 𝜃1 

2
+

1

2
𝛾−1(𝜃 2 − 𝜃2)2 

  

𝐷𝑞𝑉2 ≤ −𝑐1𝑧1
2 − 𝜃1𝑧1𝑧2 + 𝑧2𝐷

𝑞𝑧2 + 𝛾−1 𝜃 1 − 𝜃1  𝐷
𝑞𝜃 1 

+ 𝛾−1 𝜃 2 − 𝜃2  𝐷
𝑞𝜃 2  

≤ −𝑐1𝑧1
2 − 𝑥1𝑧2𝑧3 + 𝑧2{𝜃 1𝑧1 − 𝑥1𝛼2 + 𝜃 2𝑥1 − 𝑐0𝜃 1𝑥1

−  1 − 𝑐0𝜃 1 𝛼1 −  1 − 𝑐0𝜃1 𝑧2}

+  𝜃 1 − 𝜃1 𝛾
−1 (𝐷𝑞𝜃 1)

+ 𝛾 𝑐0𝑥1 − 𝑐0𝛼1 − 𝑧1 𝑧2 + (𝜃 2

− 𝜃2)𝛾−1   𝐷𝑞𝜃 2 − 𝛾𝑥1𝑧2  

Here, 𝜃 1 and 𝜃 2 are the estimates of 𝜃1 and 𝜃2.𝛾 is the 

adaptation gain. The virtual controller𝛼2 can be selected as: 

𝛼2 = 𝜃 1 + 𝜃 2 − 𝑐0𝜃 1 + 𝑐0 1 − 𝑐0𝜃1      (14) 

 and the parameter update laws will be: 

𝐷𝑞𝜃 1 = −𝛾 𝑐0𝑥1 − 𝑐0𝛼1 − 𝑧1 𝑧2,  𝐷𝑞𝜃 2 = 𝛾𝑥1𝑧2 (15) 

While choosing the expression for 𝛼2, singularity problem due 

to state 𝑥1 has been avoided by retaining the term  1 −
𝑐0𝜃1 𝑧2 and putting a constraint on 𝑐0, such that  1 − 𝑐0𝜃1 >
0. The virtual controller in (14) and update laws in (15) leads 

to 

𝐷𝑞𝑉2 ≤ −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑥1𝑧2𝑧3  (16) 

where𝑐2 =  1 − 𝑐0𝜃1 . Here, 𝜃1 > 0, and hence one can 

have−1 < 𝑐0 ≤ 0 < 1
𝜃1
 , such that,  𝑐1 = 𝑐0𝜃1 + 𝜃1 > 0 and 

𝑐2 =  1 − 𝑐0𝜃1 > 0. The derivative of 𝑧3 can be expressed 

as, 

𝐷𝑞𝑧3 = 𝑢 + 𝑥1𝑥2 − 𝜃3𝑥3 − 𝐷𝑞𝛼2 (17) 

The Lyapunov function for  𝑧1 , 𝑧2 , 𝑧3  subsystem given in 

(11), (13) and (17), is selected as: 

𝑉3 = 𝑉2 +
1

2
𝑧3

2 +
1

2
𝛾−1 𝜃 3 − 𝜃3 

2
  (18) 

and its derivative will be, 

𝐷𝑞𝑉3 ≤ −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑥1𝑧2𝑧3 

+𝑧3 𝑢 + 𝑥1𝑥2 − 𝑝3𝑥3 −𝐷𝑞𝛼2 +  𝜃 3 − 𝜃3 𝛾
−1(𝐷𝑞𝜃 3) 

The final control law will be, 

𝑢 = −𝑐3𝑧3 + 𝑥1𝑧2 − 𝑥1𝑥2 + 𝜃 3𝑥3 + 𝐷𝑞𝛼2  (19) 

which results in,  

𝐷𝑞𝑉3 ≤ −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑐3𝑧3
2 − 

 𝜃 3 − 𝜃3 𝛾
−1(𝐷𝑞𝜃 3 + 𝛾𝑥3𝑧3) 

The update law can be written as 

𝐷𝑞𝜃3 = −𝛾𝑥3𝑧3   (20) 

which results into 

𝐷𝑞𝑉3 = −𝑐1𝑧1
2 − 𝑐2𝑧2

2 − 𝑐3𝑧3
2     (21) 

From the above expressions, it can be concluded that the 

system (9) is asymptotically stable. The expression (21) 

ensures that the transformation variable for 𝑧1, 𝑧2 and 

𝑧3evolve to zero in restricted time which further leads to the 

regulation of states 𝑥1, 𝑥2 and 𝑥3.  

 

V.  SIMULATION RESULTS AND DISCUSSION 

The orders for FO differentiations are taken as  𝑞1 = 𝑞2 =
 𝑞3 = 𝑞 = 0.995 and the design constants are:𝑐0 = −0.1, 𝑐3 =
5 for first case and 𝑐0 = −0.2, 𝑐3 = 30 for the second case. 

The adaptation gain𝛾 has been chosen as 2 and 8 in each case, 

respectively.The simulation time is 𝑇𝑠𝑖𝑚 = 5 𝑠 and time step 

𝑕 = 0.005.  Figures2 and 3 depict the stabilization and 

parameter estimation. As evident from the displayed figures, 

the states 𝑥1 and 𝑥2evolve to zero in fixed time, and state 𝑥3 is 

bounded. The parameter estimates remain bounded. With 

increase in value of 𝛾, the adaptation of parameter estimates is 

accelerated, and is manifested by the simulation results. 
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(a) 

 
(b) 

Fig. 2. (a) State stabilization and(b) parameter estimation  

for 𝛾 = 2, 𝑐0 = −0.1 and 𝑐3 = 5. 

 

(a) 

 

(b) 

Fig. 3. (a) State stabilization and (b) parameter estimation for 

𝛾 = 8, 𝑐0 = −0.2 and 𝑐3 = 30. 

 

FO Lorenz system provides more realistic modelling of 

Lorenz system. In case of integer order modelling, one can 
only vary initial conditions and achieve different chaotic 

behaviors. But in case of FO modelling, one has a complete 

range of fractional order and hence with a slight variation in 

fractional order various chaotic behaviors can be obtained. 

Moreover, for different values of fractional order 𝑞, one can 

get different set of chaotic patterns which can provide 

additional security in various applications. 

 

VI. CONCLUSION 

The paper discusses the backstepping based step by step 

controller designer procedure for an uncertain FOCS which is 
in strict feedback form.On the basis of backstepping 

technique, a control technique for regulation of uncertain FO 

Lorenz system has been derived. Also, if this restriction is not 

forced then the states will diverge leading to the system 

instability. The proposed approach uses flexibility of 

backstepping method and avoids singularity behavior w.r.t the 

control action. The parameter update laws obtained while 

deriving the controller, give estimates of the uncertain 

parameters. The simulation results validate the proposed 

approach.  
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