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1. INTRODUCTION

A q series has an expression involving (a; q),,, which is defined by
n-—1

@, =@, =] [A-agnz1
k=0

and(a; Q) = [17=o(1 —ag®),lq| < 1,

wherea is any complex number.

Ramanujan’sgeneral theta function f (a, b) is defined by

f(a,b) =X5__ aktk+D)/2 pk(k=1)/2 " |ap|< 1.
In this notation, Jacobi’s famous triple product identity takes the form
f(a,b) = (—a; ab)w (—b;ab), (ab; ab),. (1.1)
Three special cases of f(a, b) are [6, p. 36, Entry 22]
0@ =19 =370 0" = (- 4)% (4% 1%,

V() = f(q,q°) = X qkk+D/2 = (a%4%),

(9%’ (1.2)

and

f(=a) = f(=q,—q*) = -, (1) q*CkD/2 = (¢; q)o,

where the product representations in the above arise from (1.1). After Ramanujan, we also
define

(@) = (=0 9" (1.3)
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A partitiond = (44,45, ... ... , ;) of a non-negative integernis a non-increasing sequence of
positive integer partssuch thatn = Y ; A;.The number of partitions ofnis called the partition
function and is denoted byp(n). By convention,p(0) = 1. For example, p(4) = 5, since
there are 5 partitions of 4, namely, 4,3+1,2+2,2+1+1,1+1+1+1.

The generating function forp(n) is given by

n=oP(M" =

In his last letter to Hardy, Ramanujan defined 17 theta function like functions, for|q| < 1,
which he called mock theta functions. Ramanujan found an additional three mock theta
functions in his lost notebook [1]. See [2] and [3] for details on the subject.

In [4], Andrews, Dixit and Yee found many results related to the mock theta
functionsw(q), v(q) and¢g(q). These three mock theta functions are defined, by Ramanujan,
as

- qZ(n2+n)
(@) = 2oz,
n(n+1)
R 1) q
V@) = 20 g
"
(@) = Xy,

Andrew et al. [4] proved that
Yn=0Pw(M)q" = quw(q),
Yn=opy(Mq" =v(—9q),

where,p,, (n) denotes the number of partitions ofnin which each odd part is less than twice
the smallest part andp, (n) denotes the number of partitions ofninto distinct parts in which
each odd part is less than twice the smallest part.

The simpler form of these two functions as given in [4] are

n

© n — o q
Zri=1Po (M4" = Lt G ity gy,

Yooy (Mq" = qw(@®) + (=¢% a4 (@)
Andrews, Dixit and Yee [4] find that
p, (10n + 8) = 0(mod 5).

Theorem 1.1.
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2,2
Sropy(mg" = 5 (L4)

where f;, == (¢%; q%) 0.

2. Preliminaries

Lemma 2.1.
2 a* _ k 2.1
X —m = K, ( . )
2y _ a4
y TR A (2.2)
2 f6
x° —Z—Sz 11q+é, (2.3)
4 6
ys—q—sz 11q2+f—ﬁ. (2.4)
y f1o
wherex and y are defined as-
x =T(q%),
y =T(q").

Here T (q) is a continued fraction given by

T(q) =1+ —qqz—.
1+

1+m
Lemma 2.2.
e f2 £ fs
—4 = ) 2.5
U T o (2.5)

i fio _ fifio
L _gqlo =1 mg
fi q 2 f2fs ( )
g ffh _ fife
+ = . (27
s, = e (2)
i g B8 _ f5
f# fifio  fi

(2.8)

3. Proof of Theorem1.1
We have,

2oy (Mq" = qw(@®) + P(q*)(—¢% 4w ,
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2n—0Pv(2n) q" =P (@) (=4, Q) = fz, (3.1)

Now, from [5]

f 7
25(x +qx3 +2q*x% + 3¢3x + 5¢* — 3q +2q 4) (3.2)

f1

fi=fs-q-5), (3:3)
and

fr = fo-a* =%, (3.

Using (3.2) and (3.4) in (3.1), and extracting the coefficients of g°"**, we have

E p,(10n 4+ 8)q"
n=0
flOf 10 q* y? x y?  x®
4 4.,3 _ _ 4 A 2 217 _
f1 4y xty3 T ta y3 R y3

4 2 2
-3 x%y% + ) 12q | xy? — i 10q | x° — )+ 15¢2]
X672 xy? 5

(3.5)

Again using (2.1), (2.2), (2.3) and (2.4) in equation (3.5), we arrive at

n _ 2 fiofs® fafd® 3 foffh 5 fio8 foree
Y=o Py(10n + 8)q™ = 5[147q 2 — 33957 e + 4q s, — 64q s + 4f112f10

fofs fs flo 4 fi¢
3 +10 — 240
i o 1 P q f110f22]

(3.6)

Now, we use (2.5), (2.6), (2.7) and (2.8), and will try to reduce the powers of fiand f;.
Then equation (3.6) becomes

Z p,(10n + 8)q"
n=0
11 15
= 5[-33 ]{f2+15 2}]‘;}‘1”64 3j;if +16q 4f1f2 4+10qf5f1f1°
fslof6 fsfz
e e
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= 5[—33q f15f2 15 2§f1§+64 3];‘jfg+16 ﬁl;jf4+10qf5ﬁfl°
-
= 5[-33q fl—fz+ 15 2];if“)+64 3J;if +16 4ﬂ];jf4+10qf5;ﬁ°
+5£59f22 +20 f22£5180f10]
= 5[-8 £1;2+15 2];if”’+64 3j;if +16 4M;f4+10qf5;ﬁ°
JBh o By
flflO i1
=5[—13q];i-,];12° 17 2];;];120 4 3f1f:2f5 +10q fs;é‘) £2;i’0]
- ];5; o ;5; - 3f1f212fs “O‘Ifsjaé% ﬁzgjﬁo]
= 5[-8q 20 4 337 L1

8
4q3 fio2 + fs +10 £2 i
it Y s T e T 0]

fifs
f5f10 2 f10 f58 fsf10
—5[—8 + +-—L 1+ 10q
(=847 5+ sz ¥ 7 Vs )
2 iy f38 2 f1o
= 5[2
(20555 + e Y 4 ez ]

2
S [ fs fo
= . 3.7
f10 [f1fz +qf23f5] (3.7)

Now, we have the relation from [6], we have

5¢2(—q°) — ¢>(—q) = 4x(—x(—q>)P?(q)

which implies

fs fio f2fsf10
+ =
02 5T 2

(3.8)
Now, finally using (3.8) in (3.7), we arrive at

22
Tiiopy (10 + 8)q" = 5250
1

4. Conclusion
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We used Ramanujan’s Continued fractions and five dissection off; andfi to find the
1

exact generating function ofp, (10n + 8).
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