

P a g e | 3761

THINK INDIA JOURNAL
 ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

Copyright ⓒ 2019Authors

Horizontal Aggregation in SQL to Prepare

Knowledge Sets

Mrinalini Rana1

Assistant Professor, School of Computer Science and

Engineering

Lovely Professional University

Kapurthala, India.

mrinalini.22138@lpu.co.in

Ujjwal Makkar2

Assistant Professor, School of Mechanical

Engineering.

Lovely Professional University

Kapurthala, India.

ujjwal.14832@lpu.co.in

Abstract — The most time consuming and tidies job is preparing

a data set for analysis using table joins, blending and various

queries. The traditional aggregations (SQL) have various

limitations because the outcome is one column per group

(aggregated group). Due to this, data sets are prepared

manually, where ever horizontal aggregation is required.

Horizontal aggregation is known as new class of functions, which

is required in various data mining algorithms. This paper

discussed various fundamental methods to evaluate horizontal

layout (aggregation) such as SPJ with relational algebra

operators, CASE using some programming CASE structures and

PIVOT using some DBMS operators

Keywords— RDBMS(Relational DBMS),SQL, Aggregation and

Pivoting.

I. INTRODUCTION

Data mining procedures comprises of four stages. Extraction,

cleaning and transforming is the first stage. This is called as

“DATA PREPARATION”. Second stage is analyzing the

records set. Mainly investigation effort in data mining is done

on the proposing resourceful algorithms, lacking concentrating

the structure the data set. The next step verifies outcomes,

generates reports and mapping of parameters. In the fourth

step numerical results are deployed on primary data. The

paper concentrates on data preparation stage.

Creating the right data mining knowledge collection is a time-

consuming job. SQL code's two main options: join and

aggregate [9]. Programmer can focus on join option.

Traditional aggregation method is sum of the column upon

group of lines. Some other aggregations outcomes are the

avg(), max(), min() or count() over groups of rows.. Some

valid methods are required to find aggregation in horizontal

form (cross tabulation), suitable for data mining algorithms,

based on some traditional clauses and functions in SQL. Such

efforts are to be written, optimized and tested due to the

amount and complexity of SQL. There are few other practical

reasons for the performance of the horizontal (cross-tabular)

format. Benchmark (vertical) aggregations are difficult to

understand when the results contain more lines, particularly

when there is high attribute cardinality.

In order to transpose tests, OLAP tools produce SQL code and

are also known as PIVOT [16]. Transposition is more

effective if a consumer combines aggregation and

transposition.

With all of these limitations,[5] proposes a new aggregating

function class that aggregates numeric terms and transposes

marks to generate a straight records format set. Under this

class, function is called Horizontal aggregations.

Consider the following query for a cell phone company

database:

P a g e | 3762

THINK INDIA JOURNAL
 ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

Copyright ⓒ 2019Authors

Horizontal Aggregation Pros:

 SQL programming eliminates guidebook work during

the figures mining campaign training period.

 When generated automatically, the SQL code is more

efficient. It will take less time to create the data sets.

 User can directly create the data sets in the DBMS.

II. RELATED WORK

Computing aggregation research is highly scalable.

Aggregations or layouts are pivotal in data mining(KDD) [17]

and Online Analytical Processing [18] applications.

The main issue of incorporating data mining algorithms into

RDBMS is the research proposed. Comparing horizontal

aggregation with alternative methods to work with

transposition or pivoting.

There are plenty of ideas that have expanded the syntax of

SQL. The closest problem associated with the storage of

OLAP data mining is association rule mining[19]. In [20],

aggregate functions for association rule mining are

implemented with some SQL extensions.

Unfortunately, as transactions are mentioned in vertical layout,

there is no notation of transposing results. Some other SQL

extensions have been added in [21] to perform spreadsheet-

like (excel) operations.

There is no membership in the procedure for CASE and

PIVOT.

Optimizing joints have been implemented in [23] by

reordering operations and by applying transformation rules. In

practice, a commonly used SQL feature is the CASE construct

to optimize queries that have not been studied in depth before

a list of similar CASE statements is available.

The TRANSPOSE operator produces multiple columns for a

single input line compared to the un-pivot operator.

 In terms of horizontal aggregations, both UNPIVOT and

TRANSPOSE is reverse operators.

A generic format may provide aggregations and group-by

queries with more robust data mining techniques such as FP

tree, decision tree, but is usually less effective than a cross-

tabulation model. Parallel aggregations are equal to horizontal

aggregations percentage [6]. Instead of one and DBMS

storage problems such as generating and locking SQL code,

three calculation methods are now considered.

III. BACKGROUND

A data source is a collected data or information, usually in

tabular form. Each column is a common factor. Every row

corresponds to the data set of a given member. It lists values

such as the altitude and mass of an object for each of the

variables. Each value is referred to as a datum.

P a g e | 3763

THINK INDIA JOURNAL
 ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

Copyright ⓒ 2019Authors

The facts set may contain records corresponding to the number

of rows for one or more members.

Data mining systems are widely used in horizontal (cross-

tabular) layout for the efficient analysis of data. Vertical

(standard) tables for RDBMS are generally administered.

Aggregated columns return numbers in a horizontal (cross-

tabular) format.

The system uses one super table and various sub tables, and

then procedures are performed on multiple tables loaded raw

facts. PIVOT operator is used for the measurement of

RDBMS cumulative operations.

PIVOT operator is used to measure cumulative operations

provided by RDBMS. System PIVOT is much simpler and

offers a lot of scalability.

IV. HORIZONTAL AGGREGATION

It is an introduction of a new class of aggregation that has

same functionality to SQL traditional code aggregation and

results in tables with horizontal display. On the other side,

using traditional SQL aggregations represent the vertical

representation. In the SELECT command, level aggregation

requires a syntax extension to aggregate functions (sum,

max, min, etc.). Otherwise, SQL code can be created from a

data mining device to create data source for data

withdrawal examination. Explain how to automatically

create SQL code.

A. SQL Code Generation:

First goal is to define a standard template for aggregating

and transposing / pivoting code generation.

The second objective is to enhance the SELECT command

by introducing and aggregating it.

For Illustration:

“Select L1 to Lm sum(B)

From F

Group By L1 to Lm;”

The aggregation order would arise from a table of "m+1"

attributes, with single class for apiece inimitable grouping

of L1 ... Lm values and an aggregated assessment per

category (sum (B) in the example in question). To test this

query, the question optimizer enters three constraint:

1. Tabular representation

2. Columns (L1…Lm)

3. Layout or aggregation

 Thus, in horizontal design there are four input constraint to

generate code:

1. F is participation tabular representation,

2. Column L1 to Lj is list of GROUP BY columns

3. Aggregate (A) column

4. Transposing Column R1 to Rk.

Horizontal aggregations maintain semantic assessment of

standard aggregations. The foremost variation is to return a

table, possibly with additional nulls, with a horizontal layout.

The definition makes it possible to transpose a simple

generalization of several comprehensive columns, each among

a diverse column list being transposed.

V. Collection of SQL Code: table Locking and Effect

Definition

Discuss now how to create active SQL code automatically to

test horizontal aggregations. Changing the query optimizer's

internal data structures has more scalability, but refer to some

pointers. Begin by discussing the result table structure and

then look for methods of optimization to fill it.

A. Locking

To get a reliable request evaluation, locking [22] must be

used.

The actual values of aggregation in FH will change. Using

tabular locks acquired on F, FV, and FH before beginning and

releasing the first claim after populating FH to return clear

responses. To recapitulate, the intact set of declarations

becomes a larger transaction.
.

B. Result Table Definition

FH has columns for aggregation, plus its primary key. FH

(the result table) must therefore have the grouping column

set (L1 to Lj) as the primary key and all existing

combinations of values R1 to Rk as non-key columns. The

horizontal aggregation function H) (returns a set of values

for each class L1 to Lj, rather than a single value. Assume

that the table of results is FH. Retrieved the separate

combination meaning of ‘R1 to Rk’ , using the following

statement.

“Select distinct R1 to Rk from F;”

Let the table be FH and primary key syntax is as follows:

.

“Create table FH(a1 int, a2 int,…., an real) primary key(

a1….an);”

VI. Generation of SQL Code: Query Evaluation Methods

P a g e | 3764

THINK INDIA JOURNAL
 ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

Copyright ⓒ 2019Authors

For test horizontal aggregations, the paper suggests three

methods. The first method is based solely on related

operations, i.e. only selecting, projecting, joining, and

aggregating queries; it is called the SPJ method. The instant

form is based on the "case" structure; it is called the CASE

method. Each table has some serial numbers on its primary

key to decide to blend effectively. There are also no external

indexing mechanisms to step up query analysis. The further

move towards uses the built-in SQL revolve operator,

converting rank into line (e.g., transposing).

Fig 2. Unoptimized 5].

Fig. 3. Optimized[5].

A. SPJ Method:

Projected tables of d queries from F (input table) to d Select-

Project-Join-Aggregation, column number for analysis, array,

forecast. Each FI table corresponds to one subgroup variation

and is the only non-key column (L1; ..; Lj) as the primary key

and an A aggregation. In order to obtain a complete collection

of results and suggest two simple FH measurement sub-

strategies, it is compulsory to implement an supplementary

Table F0 that will be joined externally with expected tables.

The first of these aggregates directly from F. In a temporary

table FV (vertical aggregation table) grouping by L1 to Lj and

R1 to Rk, the second measure the corresponding vertical

aggregation.

 Then parallel design can be instead executing from FV, which

is a squashed version of F, since standard aggregations are

allocated [14].

In the above formula left join is usd.

B. CASE Method

In this "case" approach, the form of programming available in

SQL is used. The case statement precedes a significance

selected from a set of Boolean expressions based values. This

is similar to a fundamental question of projection / aggregation

from the theoretical point of view of a relational database. By

aggregating unswervingly from F and rearranging tables,

horizontal accumulation could be decided simultaneously to

construct FH. User may mainly have a blend of "R1 to Rk"

that defines the corresponding expression of the Boolean line.

Select Distinct R1 to Rk from F;

Insert into FH

C. PIVOT Method

Remember the PIVOT operator who is an advanced DBMS

operator. Because this operator can carry out transposition and

can assist in estimating straight aggregations. The PIVOT

process internally requires determining how many columns the

transposed table must be stored and can be combined with the

GROUP BY clause.

The vital syntax to utilize the PIVOT operator is as follows:

“Select Distinct R1 from F;

Select L1 to Lj into Ft

From F PIVOT(V(A) from R1 in(v1 to vd) as P;”

Additional optimized query for large table, because the query

inside the query orderly F from line that are not later on

desirable.

“Select L1 to Lj , v1 to vd into FH

From (select L1 to Lj, Rk , A from F) Ft PIVOT(V (A) For

R1 in(v1 to vd) as P;”

P a g e | 3765

THINK INDIA JOURNAL
 ISSN: 0971-1260

 Vol-22-Issue-17-September-2019

Copyright ⓒ 2019Authors

VII. CONCLUSION

Data mining tools are commonly used in horizontal tabular

format to analyze data effectively. Typically, RDBMS

manages vertical tables. Aggregated columns return numbers,

rather than one number per row, in a horizontal tabular format.

Device PIVOT is a lot simpler and offers a lot of scalability.

So, the concluding points are as follows:

Generally horizontal aggregations are useful in generating

horizontal format data sets, as the data mining algorithms

usually require. But a horizontal multiplication returns for

each group, analogous to a multidimensional matrix, a

collection of numbers as an alternative of a single number.

From a hypothetical point of view, the SPJ method be useful

because it focuses on selecting, projecting, and joining i.e.

The SPJ's comments.

The large-scale experiments demonstrate that the efficiency

of the proposed parallel aggregations evaluated using the

CASE approach is the same as the integrated PIVOT

operator[5].

REFERENCES

[1] Carlos Ordonez, San Diego, “Horizontal Aggregation for Building

Tabular Data Sets”, Proc.ACM SIGMOD Workshop on Research Issues

in Data Mining and Knowledge Discovery (DMKD),pp.35-42,2004.

[2] M.Stella Inba Mary,V.Kalaivani, “QueryOptimization using SQL
Approach for Data Mining Analysis”, IJCA Proceedings on

International Conference in Recent trends in Computational Methods,

Communication and Controls (ICON3C 2012) ICON3C(3) ,pp. 17-
21,2012.

[3] Carlos Ordonez, Javier García-García, Zhibo Chen, San Diego, “

Dynamic Optimization of Generalized SQL Queries with Horizontal
Aggregations”, Proc. ACM SIGMOD Conference, pp.35-42 ,2012.

[4] Carlos Ordonez, “Optimization of Linear Recursive Queries in SQL”,

IEEE Transactions on Knowledge and Data Engineering (TKDE
Journal). 22(2):264-277, 2010.

[5] Carlos Ordonez, Zhibo Chen, “Horizontal Aggregation in SQL to

prepare Data Sets for Data Mining Analysis” IEEE ,VOL.24 , Issue 4 ,

pp. 678-691,2012.

[6] C. Ordonez, “Vertical and Horizontal Percentage Aggregations,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’04), pp.

866-871, 2004.

[7] C. Ordonez, “Integrating K-Means Clustering with a Relational DBMS
Using SQL,” IEEE Trans. Knowledge and Data Eng., vol. 18, no. 2, pp.

188-201, Feb. 2006.

[8] C. Ordonez, “Statistical Model Computation with UDFs,” IEEE Trans.
Knowledge and Data Eng., vol. 22, no. 12, pp. 1752-1765, Dec. 2010.

[9] C. Ordonez, “Data Set Preprocessing and Transformation in a

Database System”, Intelligent Data Analysis, vol. 15, no. 4, pp. 613-
631, 2011.

[10] H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Small But Complete

SQL Extension for Data Mining and Data Streams”, Proc. 29th Int’l
Conf. Very Large Data Bases (VLDB ’03), pp. 1113-1116, 2003.

[11] S. Chaudhuri and U. Dayal, "An overview of data warehousing and

OLAP technology", ACM SIGMOD Record, 26(1):65-74, 1997.

[12] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman. Non-stop
SQL/MX primitives for knowledge discovery. In ACM KDD

Conference, pages 425-429, 1999.

[13] G. Graefe, U. Fayyad, and S. Chaudhuri, "On the efficient gathering of
sufficient statistics for classification from large SQL databases" ,In

Proc. ACM KDD Conference, pages 204-208, 1998.

[14] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh, "Data cube: A
relational aggregation operator generalizing group-by, cross-tab and

sub-total", In ICDE Conference, pages 152-159, 1996.

[15] J. Han, J. Pei, G. Dong, and K. Wang, "e-Client computation of iceberg
cubes with complex measures", In ACM SIGMOD Conference, pages 1-

12, 2001.

[16] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria, “PIVOT and
UNPIVOT: Optimization and Execution Strategies in an RDBMS”, Proc.

13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp. 998-1009,

2004.
[17] U. Fayyad and G. Piateski-Shapiro, "From Data Mining to Knowledge

Discovery", MIT Press, 1995.

[18] J. Widom, "Research poblems in data warehousing", In ACM CIKM
Conference, pages 25{30, 1995.

[19] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Association Rule

Mining with Relational Database Systems: Alternatives and
Implications”, Proc. ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’98), pp. 343-354, 1998.

[20] H. Wang, C. Zaniolo, and C.R. Luo, “ATLAS: A Small But Complete
SQL Extension for Data Mining and Data Streams”, Proc. 29th Int’l

Conf. Very Large Data Bases (VLDB ’03), pp. 1113- 1116, 2003.

[21] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A.

Gupta, L. Sheng, and S. Subramanian, “Spreadsheets in RDBMS for

OLAP”, Proc. ACM SIGMOD Int’l Conf. Management of Data

(SIGMOD ’03), pp. 52-63, 2003.
[22] H. Garcia-Molina, J.D. Ullman, and J. Widom, "Database Systems: The

Complete Book", first ed. Prentice Hall, 2001.

[23] C. Galindo-Legaria and A. Rosenthal, “Outer Join Simplification and
Reordering for Query Optimization,” ACM Trans. Database Systems,

vol. 22, no. 1, pp. 43-73, 1997.

