
 

 

 

 
 
 

P a g e | 3766 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

 

 

Comparative Analysis of Graph Coverage Criteria based 

Test Paths of Automotive embedded system for validation 

and safety 

 

Parampreet Kaur, Rajeev Sobti 

School of Computer Science 

Engineering 

Lovely Professional University 

Jalandhar, India 

parampreet.18758@lpu.co.in , sobtirajeev@gmail.com 

 

 

 

Abstract 

 

The automotive modernizations in the past decades are dominated by new software-based 

functions. A validation of these functions is always required for ensuring the safety of the 

vehicles. Several studies show the effectiveness of design-based methodologies for performing 

testing and evaluation of vehicular system functionalities. Along with the advancement of 

automated driving technologies, the demand for simulation-based assistance of such vehicles 

is increasing. For the simulations, the modelling of the observation sensors plays an 

indispensable role. State-of-the-art studies and research investigations elucidates an ever-

increasing requirement of efficiency of the test paths. The elementary structure of the 

modelling is also delineated here, and a viewpoint for future requirements on it is given. Prime 

path coverage and edge-pair coverage when combined with prefix graph algorithm generates 

least number of yet effective test cases which can traverse all the states in less time. Other 

approaches such as node coverage or edge pair coverage also yields good results but the test 

path requirements are very large. 

 

Introduction 

 

Advanced autonomous vehicles either being used for private transportation or freight delivery 

can offer a doubtlessly great disruption to lifestyles, commercial enterprises and society [1]. 

The possible benefits are manifold - reductions in accidents bobbing up from human mistakes, 

reduced fee & environmental impact of transport, liberation of time presently committed to 

driving, and accessibility to a wider variety of users are all theoretically addressable. 

Keeping it into consideration, some key challenges should be conquered to reap this 

imaginative and perceptive aspect [2]. 

 

mailto:parampreet.18758@lpu.co.in
mailto:sobtirajeev@gmail.com


 

 

 

 
 
 

P a g e | 3767 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

1. Guarantee of quality structures and software programs: How can we outline and show 

the proper degree of acceptability? 

2. Sensing and Connectivity: How can we ensure the right relationship between an automobile 

and its surroundings? 

3. Judgement: How can automated systems exercise judgement? 

4. Architectures for managing complexity: How are we able to manage the resulting machine 

complexity? 

5. Verification & validation: To what extent is testing required, and the how it can be 

achieved? 

 

 
Figure 1: Key Challenges in automated driving 

 

The assessment and testing of autonomous vehicular systems is gaining widespread attention 

and multifaceted nature as the system’s complexity increases [3]. To handle this effectively, 

the need for well-organized and widely accepted opportunities to verify these systems ascends. 

Physical road examinations would necessitate millions of kilometres in order to obtain the 

vehicle’s operation. Therefore, this method of validation and verification is not appropriate for 

a development process, such as the V-model [4]. Automatic driving roles have to be assessed 

in a diversity of complex traffic situations, with the indecisions resulting from different 

accommodating traffic members. Computer-generated assessment by simulation capacitates to 

provide a harmless way to evaluate the performance of algorithms under a wide-ranging 

variation of scenario constraints. Simulation based strategies have proven to be very engaging 

and trustworthy means to conform the reliability and safety of the driving applications by 

virtually displaying the behaviour of the embedded system sensors and actuators. [5]. The 

Figure 3 provides overview of different test-based architectures used in automotive sector. 

 



 

 

 

 
 
 

P a g e | 3768 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

 
Figure 2: Testing Architectures 

 

 

 

Related Work 

 

Task-Specific self-directed cars system validation method is modelled in functional levels, 

evading the complexities of different algorithms estimation, comparable to Grey-Box testing 

[6], described in  Figure 4. By analysing autonomous driving systems, lists of simple function 

test cases are designated and accumulated into different testing procedures, which are further 

abstracted as driving process classes. By analysing precise driving functions, autonomous 

driving features can be estimated. Self-driven functional tests are approved under different 

simulation or real environments. By a recognized testing method, such as test-designing, 

planning, logging and valuation and accomplishment confirmation, all vehicle operations  are 

lastly assessed with diverse task complication property and dissimilar environment difficulties 

[7].  

 



 

 

 

 
 
 

P a g e | 3769 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

 
Figure 3:  Vehicular System validation modelling 

 
Figure 4: Different states of driving tasks 

 

The self-governing vehicular growth boons with a description of the functional and behavioural 

requirements/specifications of the anticipated functions, from the elementary self-directed 

driving requirements to switch small and long term planning, escape unsafe crashes and 

accidents [8]. The autonomous vehicle validation approaches comprises of “Test Drive” and 

“VEHIL” [9] simulation techniques, and the collective evolutionary testing. 

 

Model-based testing reintroduces the complete process of functional software testing: from 

commercial requirements to the testing databases, with manual or automated test 

implementation. It helps during the phases of designing and creating tests, recording the test 

data-repository, making and preserving the traceability matrices between test-paths and test-

requirements, and fast-tracking testing automation. Testing is one of the most significant 

instruments to validate the accurateness of embedded systems [10]. A functional test perceives 

a failure if the observed and the specified behaviour of the SUT differ. Model-based testing is 

about using models as specifications. Numerous modelling languages have been useful to 

generate test models, the Unified Modelling Language (UML) [11], or the Object Constraint 

Language (OCL) [12]. Model-based testing involves deriving test suites automatically from 



 

 

 

 
 
 

P a g e | 3770 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

formal test models. This paper is focused on automatic model-based test generation with UML 

state machines and OCL expressions [13]. 

 

This paper [14] targets at presenting on the notable coverage of EAST-ADL as an abstract 

model for the comprehensive scope of pertinent models in the automotive field, and secondly, 

the prominent level of integration of novel highly developed analyses, for safety and 

effectiveness in specific, and optimization competences to make satisfactory use of the 

throughput only powerful processors can offer. Authors presented the EAST-ADL procedure, 

explaining in detail timelines and the most useful abstraction stages.  Fundamentals for model-

based optimization are also obtainable as the chance of dealing with contradictory areas. 

 

A Test path can be attained using the Depth First Search technique (DFS), by navigating an 

LTS beginning from the original state. The coverage criterion of the methodical process is that 

all paths conditions and labelled shifts are traversed, i.e., all states and labelled edges are visited 

at least once. Since we are deliberating on functional testing, whole coverage is a rational and 

achievable goal, to assure a systematically examination of the attribute functionalities [15]. 

 

 

Figure 5: MIL/SIL model as described in [16] 

Test-Weaver [16] controls definite constraints and inputs and it perceives accuracy / quality 

pointers, as well as other particular state variables curtailing from the controller or from the car 

and traffic virtual model. The networking between Test-Weaver and the virtual environment is 

done at distinct time points. At these time intervals snapshots of the contributions and of the 

observables are communicated to Test-Weaver. 
 



 

 

 

 
 
 

P a g e | 3771 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

 
Figure 6: Automated Vehicle evolutionary design and testing workflow diagram 

 

Proposed Work 

We have performed validation using various types of test coverage criteria. These include, 

Edge Coverage, Prime Path Coverage, Prime Path Coverage using the prefix graph algorithm, 

Edge-Pair Coverage, Edge-Pair Coverage using the prefix graph algorithm. The system states 

taken into consideration are Adaptive Cruise Control and Lane change and keep assist 

functions. The required number of states are transformed into a simplified finite state chart as 

described in the figure 8. By keeping into view the importance of modelling during every phase 

of software development, we have followed the Double V-model as described in the Figure 

below for drawing comparison between various graph-based coverage criteria methods.  

 

 

Figure 7: Double V-Model for system verification 

The system functions are later converted into a simplified graph-based structure where first 

time analysis is done keeping only 1 initial node. Later more initial and final nodes are added 

to check the algorithm’s capability to identify and execute test paths for verification. 



 

 

 

 
 
 

P a g e | 3772 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

 

Figure 8: Finite state machine representation 

 

The graph provided in the figure 8 above consists of 7 states which an automated vehicle is 

intended to reach. The test cases and test paths thus provided by each of the different algorithms 

will identify the best and optimized test requirements to traverse these nodes which are the 

states required to be reached. To execute the test path generation, we have used edge coverage, 

edge-pair coverage with and without prefix graph algorithm. Three test paths are needed for 

Edge Coverage as shown below in Table 1. Three testing-paths are needed for Prime-Path 

Coverage using the prefix-based graph algorithm as shown in the Table 2. 

 

 

 

Table 1: Edge Coverage Method Test Cases/Requirements 

[1,4,5,6,1,4,5,6,7] 

[1,4,5,1,2,3] 

[1,4,5,6,7] 

 

Table 2: Prime Path Coverage Analysis of TEST CASES 

 

Test Paths Direct Test-Requirements  

[1,4,5,1,4,5,1,2,3] [4,5,1,2,3], [4,5,1,4], [1,4,5,1], [5,1,4,5] 

[1,4,5,6,1,4,5,6,7] [4,5,6,1,4], [1,4,5,6,7], [1,4,5,6,1], [6,1,4,5,6], 

[5,6,1,4,5] 

[1,4,5,1,4,5,6,1,4,5,6,1,4,5,6,1,2,3] [4,5,6,1,2,3], [4,5,6,1,4], [1,4,5,6,1], [6,1,4,5,6], 

[5,6,1,4,5], [4,5,1,4], [1,4,5,1], [5,1,4,5] 

 



 

 

 

 
 
 

P a g e | 3773 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

Testing-Paths In-Direct Test-Requirements  

[1,4,5,1,4,5,1,2,3] [4,5,1,2,3], [1,4,5,1] 

[1,4,5,6,1,4,5,6,7] [1,4,5,6,7] 

[1,4,5,1,4,5,6,1,4,5,6,1,4,5,6,1,2,3] [4,5,6,1,2,3], [4,5,6,1,4], [1,4,5,6,1], [6,1,4,5,6], 

[5,6,1,4,5], [4,5,1,4], [1,4,5,1], [5,1,4,5] 

 

Table 3: 3 test paths are needed for Prime Path Coverage using the prefix graph 

algorithm 

 

Testing-Paths Direct Test-Requirements  

[1,4,5,1,4,5,1,2,3] [4,5,1,2,3], [4,5,1,4], [1,4,5,1], [5,1,4,5] 

[4,5,6,1,4,5,6,7] [4,5,6,1,4], [1,4,5,6,7], [6,1,4,5,6], [5,6,1,4,5] 

[4,5,1,4,5,6,1,4,5,6,1,4,5,6,1,2,3] [4,5,6,1,2,3], [4,5,6,1,4], [1,4,5,6,1], [6,1,4,5,6], 

[5,6,1,4,5], [4,5,1,4], [5,1,4,5] 

 

Testing-Paths In-Direct Test-Requirements  

[1,4,5,1,4,5,1,2,3] [4,5,1,2,3], [1,4,5,1] 

[4,5,6,1,4,5,6,7] None 

[4,5,1,4,5,6,1,4,5,6,1,4,5,6,1,2,3] [4,5,6,1,2,3], [4,5,6,1,4], [1,4,5,6,1], [6,1,4,5,6], 

[5,6,1,4,5], [4,5,1,4], [5,1,4,5] 

 

 

 

 

Table 4: 6 test paths are needed for Edge-Pair Coverage 

 

Testing-Paths Direct Test-Requirements  

[1,4,5] [1,4,5] 

[1,4,5,6,7] [1,4,5], [4,5,6], [5,6,7] 

[1,4,5,1,4] [1,4,5], [4,5,1], [5,1,4] 

[1,4,5,6,1,4] [1,4,5], [4,5,6], [5,6,1], [6,1,4] 

[1,4,5,1,2,3] [1,2,3], [1,4,5], [4,5,1], [5,1,2] 

[1,4,5,6,1,2,3] [1,2,3], [1,4,5], [4,5,6], [5,6,1], [6,1,2] 

 

 
Table 5: 3 test paths required for Edge-Pair Coverage with prefix-graph algorithm 

 

Testing-Paths Direct Test-Requirements  

[1,4,5,1,4,5,1,2,3] [1,2,3], [1,4,5], [4,5,1], [5,1,2], [5,1,4] 



 

 

 

 
 
 

P a g e | 3774 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

[1,4,5,6,1,4,5,6,1,2,3] [1,2,3], [1,4,5], [4,5,6], [5,6,1], [6,1,2], [6,1,4] 

[1,4,5,6,7] [1,4,5], [4,5,6], [5,6,7] 

 

Testing-Paths InDirect Test-Requirements  

[1,4,5,1,4,5,1,2,3] None 

[1,4,5,6,1,4,5,6,1,2,3] None 

[1,4,5,6,7] None 

 

 
Table 6: 4 test paths required for Prime-Path Coverage 

 

Testing-Paths Direct Test-Requirements  

[1,4,5,6,1,2,3] [4,5,6,1,2,3], [1,4,5,6,1] 

[1,4,5,1,2,3] [4,5,1,2,3], [1,4,5,1] 

[1,4,5,6,1,4,5,6,7] [4,5,6,1,4], [1,4,5,6,7], [1,4,5,6,1], [6,1,4,5,6], [5,6,1,4,5] 

[1,4,5,1,4,5] [4,5,1,4], [1,4,5,1], [5,1,4,5] 

 

Testing-Paths InDirect Test-Requirements  

[1,4,5,6,1,2,3] None 

[1,4,5,1,2,3] None 

[1,4,5,6,1,4,5,6,7] [1,4,5,6,7] 

[1,4,5,1,4,5] None 

 

 

 

 

 

 

Conclusion 

The results and analysis of the comparison between different algorithms thus yields that prime 

path coverage when combined with prefix graph algorithm generates least number of yet 

effective test cases which can traverse all the states in less time. Other approaches such as node 

coverage or edge pair coverage also yields good results but the test path requirements are very 

large. Test Requirements which are traversed by test-paths using indirect routes are also been 

provided in the accompanying tables.  

 

 



 

 

 

 
 
 

P a g e | 3775 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

REFERENCES 

[1] G. Sabaliauskaite, “Integrating Autonomous Vehicle Safety and Security,” no. level 0, 

pp. 75–81, 2017. 

[2] F. Jiménez, Future Perspectives and Research Areas. Elsevier Inc., 2018. 

[3] M. Hartmann, M. Viehweger, W. Desmet, M. Spitzer, M. Stolz, and D. Watzenig, “‘ 

Pedestrian in the Loop ’: An approach using augmented reality,” no. February, pp. 10–

15, 2018. 

[4] P. F. J. G. Wrage, “Reliability Validation and Improvement Framework Peter by 

CMU/SEI-2012-SR-013,” 2012. 

[5] M. Mauritz, F. Howar, and A. Rausch, “Assuring the Safety of Advanced Driver 

Assistance Systems through a Combination of Simulation and Runtime Monitoring,” 

Lect. Notes Comput. Sci., vol. 9953, 2016. 

[6] J. Villagra et al., Automated Driving. Elsevier Inc., 2018. 

[7] K. Abdelgawad, M. Abdelkarim, B. Hassan, M. Grafe, and I. Gräßler, “A Scalable 

Framework for Advanced Driver Assistance Systems Simulation,” Proc. 6th Int. Conf. 

Adv. Syst. Simul. (SIMUL 2014), Oct 2014, NIzza, Fr., no. c, pp. 43–51, 2014. 

[8] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen, “Testing advanced driver 

assistance systems for fault management with the VEHIL test facility ∗ Testing 

Advanced Driver Assistance Systems for Fault Management with the VEHIL Test 

Facility,” vol. 19, 2004. 

[9] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen, “Development of advanced 

driver assistance systems with vehicle hardware-in-the-loop simulations,” Veh. Syst. 

Dyn., vol. 44, no. 7, pp. 569–590, Jul. 2006. 

[10] F. Ambert, F. Bouquet, J. Lasalle, B. Legeard, and F. Peureux, “Applying an MBT 

Toolchain to Automotive Embedded Systems : Case Study Reports,” no. c, pp. 139–

144, 2012. 

[11] P. Kaur and A. K. Luhach, “An approach to improve test path generation: Inclination 

towards automated model-based software design and testing,” in 2016 5th 

International Conference on Reliability, Infocom Technologies and Optimization, 

ICRITO 2016: Trends and Future Directions, 2016. 

[12] P. Zech, P. Kalb, M. Felderer, C. Atkinson, and R. Breu, “Model-based regression 

testing by OCL,” Int. J. Softw. Tools Technol. Transf., pp. 1–17, 2015. 

[13] P. Kaur and R. Sobti, “Optimized MBT-Test Case Generation for Embedded System 

Controller Using LabVIEW and Sequence Graphs,” Springer Adv. Intell. Syst. 

Comput. 709, pp. 283–294, 2018. 

[14] R. Kolagari et al., “Model-Based Analysis and Engineering of Automotive 

Architectures with EAST-ADL To cite this version : Model-Based Analysis and 

Engineering of Automotive Architectures with EAST-ADL : Revisited,” 2018. 



 

 

 

 
 
 

P a g e | 3776 

 

 
 

THINK INDIA JOURNAL 

 
ISSN: 0971-1260 

 Vol-22-Issue-17-September-2019 

 

Copyright ⓒ 2019Authors 

 

[15] A. Aleti, “Designing automotive embedded systems with adaptive,” 2014. 

[16] M. Tatar, “Enhancing ADAS Test and Validation with Automated Search for Critical 

Situations,” no. September 2015, 2016. 

 


